EVALUATING TEACHER PERFORMANCE IN HIGHER EDUCATION:
THE VALUE OF STUDENT RATINGS

by

Judith Prugh Campbell
B.A. University of South Florida, 1974
M.Ed. Stetson University, 1979

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Education
in the Department of Educational Research, Technology, and Leadership
in the College of Education
at the University of Central Florida
Orlando, Florida

Summer Term
2005

Major Professor: William C. Bozeman
© 2005 Judith Prugh Campbell
The purposes of this research were to: (a) assess community college students’ perceptions of the student evaluation practice; (b) assess community college faculty members’ responses to student evaluations of teachers and the extent to which instructional modifications resulted from student ratings; and (c) assess community college administrators’ responses to student evaluations of teachers, the extent student ratings influenced administrators’ evaluations of faculty, and how the results from student ratings were used to promote instructional effectiveness.

A total of 358 students, faculty, and administrators from 5 Florida community colleges contributed their opinions on the value of the practice of student evaluation of teaching. Data were collected using mixed methodology. The survey and interview sessions were conducted on location at the respective community colleges. Descriptive statistics, correlation and regression procedures, one-way analysis of variance, t-test, and phenomenological analysis were used to analyze the data.

Quantitative results indicated that these 320 community college students believed that student ratings had value, and, thus their role as instructor evaluator was important. Furthermore, the students believed student evaluations were important to faculty and administrators. However, most students were either unaware or did not believe that student evaluations had any effect. Phenomenological analysis of the extensive descriptions provided by 21 faculty participants suggested that the numeric data provided by student evaluations was generally an ineffective method to impact instruction. Faculty
described their frustration with inadequately designed instruments, ineffective methods of receiving ratings results, and limited or non-existent feedback from supervisors.

Phenomenological analysis of the 17 administrators’ transcriptions suggested that although the student ratings practice was vital to institutional integrity the results from student evaluations were marginally valuable in their impact on enhancing instruction and of limited value in faculty evaluation.

Implications for student evaluation practices drawn from this study included the need for institutions to: (a) assess the value of their student evaluation practice and its impact on teaching effectiveness; (b) define and clearly articulate a statement of purpose for conducting student evaluations; (c) refine procedures for administering the student evaluation practice; (d) examine their student evaluation practices and instrument on a regular review cycle; (e) adopt alternative methods for collecting and disseminating student feedback; (f) implement student evaluation measures that reflect the varied teaching approaches and diverse learning environments.
Knowledge enlightens; wisdom inspires. I dedicate the efforts of this project to my parents, Sam and Marie Prugh, and to my children, Stephen, Gregory, and Elizabeth Campbell. Their unconditional love has been, and always will be, my inspiration.
ACKNOWLEDGMENTS

To my dissertation committee members, colleagues, research participants, and family, I extend my deepest appreciation for your assistance and encouragement during the challenging journey of doctoral studies. Dr. William C. Bozeman, committee chair, thank you for your expert guidance and valuable critiques of the research project. Dr. Bernard Jensen, Dr. Debbie Hahs-Vaughn, and Dr. Charles Carroll, thank you for your time and expertise. It was an honor and privilege to conduct this research under your supervision and wise counsel.

I offer special recognition to Dr. Kent Sharples, President of Daytona Beach Community College (DBCC), for his vision in developing the Beacon Leadership Program, and to Dean Verl Beebe, trusted mentor and colleague. To the members of the UCF/Daytona cohort, thank you for the bonds of friendship that facilitated my professional and personal development. A very special tribute goes to Dilia Rodriguez and Jennifer Maxwell, DBCC department colleagues, who accepted extra duties that enabled me to have the freedom of mind to focus on this project.

An official acknowledgment goes to the five Florida community college presidents, vice presidents, administrators, faculty members, and students who participated in this research project. Each of you made the experience rewarding.

Heartfelt thanks to my children, Stephen, Gregory, and Elizabeth; and family members including sisters Marybeth Collins, Ginny Goodin, Denise Kundid, Cathy Prugh, and brothers Greg, Tim, Mike, Sam, and Chris Prugh for their loyal support. May God bless each of you.
TABLE OF CONTENTS

LIST OF TABLES... xii

CHAPTER 1 INTRODUCTION .. 1

Statement of the Problem.. 5

Purpose of the Study ... 5

Research Questions .. 6

Definition of Terms ... 7

Assumptions .. 7

Design of the Study ... 8

Delimitations .. 10

Significance of the Study ... 10

Organization of the Study ... 11

CHAPTER 2 REVIEW OF THE LITERATURE ... 12

Introduction ... 12

Conceptual Frame for Evaluation of Teaching Effectiveness 13

Characteristics of Good Teaching .. 14

Learning Theories and Teaching Methods ... 17

Postsecondary Philosophical and Instructional Changes .. 18

A Systems Approach to Evaluation .. 20

Historical Overview ... 22

Status of the Student Ratings Research .. 25

Validity of Student Ratings ... 27
CHAPTER 3 METHODOLOGY ... 46

Introduction .. 46
Statement of the Problem ... 46
Population and Sample .. 48
Instrumentation ... 56
Instrument Validity and Reliability .. 58
Data Collection .. 60
Data Analysis ... 64
Dependent Variables ... 65
Independent Variables .. 66
Research Question 1 ... 66
Research Question 2 ... 67
Research Questions 3 and 4 ... 68
Summary .. 69

CHAPTER 4 ANALYSIS OF DATA ... 71

Introduction .. 71
Description of Sample Population .. 72
Research Question 1 ... 73
Descriptive Analysis of Survey Statements 1 – 5, 10, 15 75
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptive Analysis of Beliefs About the Value of Ratings</td>
<td>81</td>
</tr>
<tr>
<td>Inferential Analysis</td>
<td>83</td>
</tr>
<tr>
<td>Mean Differences in Beliefs as a Function of Gender</td>
<td>83</td>
</tr>
<tr>
<td>Mean Differences in Beliefs as a Function of Program</td>
<td>85</td>
</tr>
<tr>
<td>Predicting Beliefs from Student Age</td>
<td>86</td>
</tr>
<tr>
<td>Predicting Beliefs from Total Credits Earned</td>
<td>87</td>
</tr>
<tr>
<td>Research Question 2</td>
<td>88</td>
</tr>
<tr>
<td>Correlation Between Rating Scales: Importance and Effects</td>
<td>90</td>
</tr>
<tr>
<td>Correlations Across Variables</td>
<td>91</td>
</tr>
<tr>
<td>Correlations Among Variables: Importance of Student Ratings</td>
<td>91</td>
</tr>
<tr>
<td>Correlations Among Variables: Effects of Student Ratings</td>
<td>93</td>
</tr>
<tr>
<td>Correlations Among Scale Variables: Importance and Effects</td>
<td>95</td>
</tr>
<tr>
<td>Descriptive Analysis for Scales: Importance and Effects</td>
<td>96</td>
</tr>
<tr>
<td>Descriptive Analysis of Survey Statements 6 – 9</td>
<td>96</td>
</tr>
<tr>
<td>Descriptive Analysis of Survey Statements 11 – 14</td>
<td>101</td>
</tr>
<tr>
<td>Qualitative Analysis of Student Comments</td>
<td>106</td>
</tr>
<tr>
<td>Research Question 3</td>
<td>109</td>
</tr>
<tr>
<td>Independent-Samples t Test</td>
<td>110</td>
</tr>
<tr>
<td>Qualitative Analysis</td>
<td>111</td>
</tr>
<tr>
<td>Phenomenological Analysis of Faculty Transcriptions</td>
<td>113</td>
</tr>
<tr>
<td>Phenomenological Reduction</td>
<td>114</td>
</tr>
<tr>
<td>Imaginative Variation: How Evaluations Were Experienced</td>
<td>119</td>
</tr>
<tr>
<td>Synthesis</td>
<td>123</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1: Number of Community College Classes Surveyed .. 49
Table 2: Profile of Community College Participants .. 50
Table 3: Frequency Analysis of Student Survey Group \(n = 320\) .. 51
Table 4: Age Profile of Student Group ... 52
Table 5: Profile of College Credits Earned by Student Group .. 52
Table 6: Demographic Profile of Faculty Group ... 54
Table 7: Demographic Profile of Administrator Group .. 55
Table 8: Grading Faculty Survey Instrument Reliability Analysis 60
Table 9: Correspondence of Survey Statements to Scales .. 65
Table 10: Frequency Analysis for Survey Statement 1 .. 76
Table 11: Frequency Analysis for Survey Statement 2 .. 76
Table 12: Frequency Analysis for Survey Statement 3 .. 77
Table 13: Frequency Analysis for Survey Statement 4 .. 78
Table 14: Frequency Analysis for Survey Statement 5 .. 79
Table 15: Frequency Analysis for Survey Statement 10 .. 80
Table 16: Frequency Analysis for Survey Statement 15 .. 80
Table 17: Descriptive Analysis - Beliefs About the Value of Student Ratings 82
Table 18: Sample Size, Mean, and Standard Deviation of Beliefs Scale by Gender 83
Table 19: One-Way ANOVA Summary of Beliefs and Gender .. 84
Table 20: Sample Size, Means, and Standard Deviations of Beliefs Scale by Program .. 85
Table 21: One-Way ANOVA Summary of Beliefs and Program of Study 86
Table 45: Core Themes Relevant to Administrators' Experiences with SRT 128
Table 46: Individual Textural Description for Community College D Administrators.. 130
Table 47: Individual Structural Description for Community College D Administrators 131
Table 48: Composite Textural Description for the Five Administrator Groups.......... 132
Table 49: Composite Structural Description for the Five Administrator Groups.......... 133
Table 50: Textural-Structural Synthesis: Administrators’ Perceptions of the SRT 134
CHAPTER 1
INTRODUCTION

One measure of teaching effectiveness in North American higher education institutions is the scores from the survey that students complete during each academic semester. This evaluative instrument is commonly referred to as the student ratings of teaching (SRT), teacher rating form (TRF), student evaluation of teaching (SET), or student evaluation of faculty (SEF). Survey results have been used to make critical judgments regarding instructional effectiveness. Abrami, Theall, and Mets (2001) reported that student ratings “serve as tools for instructional improvement, as evidence for promotion and tenure decisions, as the means for student course selection, as one criterion of program effectiveness, and as the continuing focus of active research and intensive debate” (p.1). Essentially, student ratings have served two faculty evaluative functions: formative and summative. Results from student evaluations have been used to inform the teacher and, hopefully, assist the individual to become a more effective instructor. Summative evaluations have been made using student ratings to support tenure, promotion, transfer, and termination decisions as well as approve pay increases and faculty awards. In some colleges and universities, the data from student ratings have served as the only criterion for judging teacher effectiveness. Cashin (1999) reported, “Many colleges and universities rely heavily, if not solely, on student rating data as the only systematic source of data collected to evaluate teaching” (p.26). According to Theall and Franklin (2001), “Though it may seem obvious that summative evaluation includes more technical rigor and a wider array of date, the unfortunate reality is that
summative decisions about teaching are often made on the basis of student ratings data alone” (p.51). Consequently, evaluating faculty teaching performance through the use of student ratings has involved students in the highly sensitive personnel evaluation process. Selden (1999) reported a significant increase in the use of student ratings as a source of information to evaluate teaching performance by liberal arts colleges. According to Selden (1999), “Student ratings are now the most widely used source of information on teaching effectiveness” (p.15). Approximately 55% of the 680 liberal arts colleges that Selden surveyed in 1978 used student ratings to evaluate faculty. The importance of using student ratings as a source of information increased to 80% of the 604 liberal arts colleges surveyed in 1988 and to 88% of the 598 colleges surveyed in 1998. Kulik (2001) suggested that “the trend seems to be toward an increasing use of student ratings in higher education” (p.23). This emphasis on student ratings or “student satisfaction measures” (Downey, 2003, p.711) concerns many faculty members who are not convinced of the reliability, validity, and usefulness of the student ratings data.

Selden (1984) stated, “In general, most factors that might be expected to influence student ratings have relatively small or no effect” (p. 135). As noted by Selden (1984, p.135), some of the controversy surrounding the use of student ratings has involved issues such as student characteristics (age, sex, student level, and personality); course and class characteristics (size of class, subject matter, elective versus required course); and instructor characteristics (sex, professional rank, and grading standards).

How to measure the quality of teaching through student evaluations has been a research topic for 75 years. Centra (1993) reported that the Purdue teacher rating form which was published by Purdue University in 1927 was most likely the first student
evaluation form. According to Centra, Remmers and his Purdue colleagues used the Purdue teacher rating form in the initial investigations of student evaluation of teaching effectiveness. Cashin (1999) reported that the research base of student ratings of teaching was now extensive. Cashin’s concern was the over-reliance on student ratings data by colleges and universities; he expressed the necessity to have other sources of information to evaluate teaching. Theall and Franklin (2001) stated, “Few issues in higher education are as sensitive, divisive, and political as faculty evaluation and in particular the quality and value of the information provided by students in their evaluations of teachers and courses” (p. 45). In their review of the ratings literature, Theall and Franklin discussed the aggressive research efforts among some researchers to discredit student ratings. Theall and Franklin suggested that a more beneficial direction would be to improve the knowledge and skills of those who use the data and, thereby, decrease the issues of mistrust and misuse of the data.

Although many individuals within the higher education academic community would agree that student ratings of teaching (SRT) have informative merit, there appears to be a lack of awareness about the findings of student evaluation research among college faculty and administrators. Theall and Franklin (2001) in citing their 1989 study “found a surprising lack of knowledge about the literature of student ratings and even about the basic statistical information necessary to interpret reports accurately” (p. 46). Theall and Franklin (2001) concluded from their 1989 survey of over 600 faculty and administrators that the more knowledge the research participants had about student evaluations, the more positive were their attitudes toward students and student evaluations. Furthermore,
they reported “that lack of knowledge correlated significantly with negative opinions about evaluation, student ratings, and the value of student feedback” (p. 46).

The relative ease of SRT administration and its quantitative format have provided higher education administrators a method to measure teaching effectiveness and support personnel decisions. Moreover, using data from the SRTs has provided a method for institutions to respond to societal demands to demonstrate instructional performance. Despite concerns among some faculty about the use of SRTs, it appears that student ratings will remain as one indicator of teaching effectiveness. However, for student ratings to become more meaningful to the primary stakeholders (students, faculty, and administrators), it has been suggested by Penny (2003) that there be a shift in ratings research “to increase the practical usefulness of student ratings” (p.399). Ory and Ryan (2001) suggested that “the body of literature supporting the validity of student ratings needs to be expanded to include studies of how student ratings are used on today’s campuses and what happens as a result” (p. 41).

Acquiring information on how students perceive their role as evaluators provides an additional source of data in the continuous effort to improve the student ratings practice. In addition, examining the value of student ratings to faculty and administrators and identifying how they use the ratings data improve the feedback loop. The usefulness of student evaluations is enhanced by understanding the value of the data to each of the three stakeholder groups: students, faculty, and administrators.
Statement of the Problem

Colleges and universities have invested time, personnel, and money into the process of students’ evaluation of faculty through the use of various forms of student ratings of teaching. These data provide one measure of evaluating the quality and effectiveness of instruction. Despite there being positive uses of the data from student ratings, Ory and Ryan (2001) noted that there are unintended uses of the data. One example of an unintended consequence stated by Ory and Ryan was that “the rating process becomes a meaningless activity that is performed by students and instructors only because it is mandated” (2001, p. 40). Penny (2003) raised the issue that ratings research has been limited due to the research focus on “…issues pertaining to the validity and reliability, rather than how best to use student ratings…” (p. 399).

This research responded to the lack of emphasis on more effective use of the data for the purpose of improving teaching effectiveness by questioning the opinions and practices of the three stakeholder groups: students, faculty, and administrators. More importantly, this research raised the question of the value of SRTs: Is the effort of doing student evaluations worth the institutional investment or is it simply a routine process which has little or no effect on improving teaching effectiveness?

Purpose of the Study

Students in the higher education system have assumed a major role in the evaluation of faculty. Data from the student ratings become part of the faculty member’s file and can have a direct impact on personnel decisions. Results from the student ratings can affect annual evaluations, merit pay, advancement in faculty rank, and tenure
opportunities. Students may or may not be aware of the influence their responses have in the evaluation of faculty. Therefore, in order to improve the process of formal student evaluation of faculty, it is important to examine the perceptions students have about SRTs. The purposes of this research were to: (a) assess community college students’ perceptions of the student evaluation practice; (b) assess community college faculty members’ responses to student evaluations of teachers and the extent to which instructional modifications result from student ratings; and (c) assess community college administrators’ responses to student evaluations of teachers, the extent student ratings influence administrators’ evaluations of faculty, and how the results from student ratings are used to promote instructional effectiveness.

Research Questions

The research was based on the following four questions:

1. How did students in Florida community colleges perceive the value of their role as faculty evaluators?

2. Was there a statistically significant relationship between students’ perceptions of the relevance or importance of the student survey for evaluating professors and how students believed the survey results were used?

3. What were the Florida community college faculty member respondents’ perceptions of the student evaluation process and its impact on instruction?

4. What were the Florida community college administrators’ perceptions of the student evaluation process and its impact on instruction and faculty evaluation?
Definition of Terms

The following definitions were used for the purpose of this study:

Administrator—a community college program manager, department chair, dean, and vice-president whose job function includes supervising and evaluating faculty

Community college—a public 2-year postsecondary institution which awards associate degrees

Faculty—a teacher who is credentialed to teach by the institution and is currently teaching at the community college level

Process—a series of actions leading to a final product; process and practice are terms used to denote the customary action of the use of student rating forms to evaluate teaching effectiveness

Student ratings of teaching (SRT)—a common term to describe the use of rating forms which students use to evaluate teachers. This term is similar in meaning to the terms teacher rating forms (TRFs), student evaluations of teaching (SET), and student evaluation of faculty (SEF) which are often used in the student ratings literature.

Value—to rate or scale in usefulness, importance, or general worth; to consider or rate highly (Merriam-Webster’s Collegiate Dictionary, 1993)

Assumptions

This research was conducted with the following assumptions:

1. The community college personnel who were asked to participate in this study assisted with the research by randomly identifying class sections with students
who were enrolled in sophomore courses to respond to the Grading Faculty
survey.

2. Students thoughtfully and honestly completed the Grading Faculty survey.

3. Faculty thoughtfully and honestly completed the Grading Faculty survey.

4. Administrators and faculty candidly responded to the interview questions.

5. The presence of the researcher during the survey administrations and
 interview sessions served to build rapport and to improve the response rate.

6. The survey and interview responses were a valid measure of all participants’
 attitudes and opinions about the student ratings process.

Design of the Study

The state of Florida has 28 community colleges. This study was limited to
requesting participation from 6 Florida community colleges which were similar in annual
2002-2003 unduplicated enrollment size according to the United States Department of
Education National Center for Education Statistics (NCES, 2004). These community
colleges ranked by size of enrollment from eighth to thirteenth largest (Appendix A).

Each of the 6 community college presidents and academic vice-presidents was
contacted by two letters during October 2004. The first letter of notification (Appendix
B) informed the president and vice-president of the research project. The second letter
(Appendix C), which was mailed one week later, invited the senior administrators to
participate in the study and requested the vice-president’s assistance in arranging for
the researcher to visit the campus. Subsequently, the researcher contacted each academic
vice-president by telephone and E-mail to discuss the specific needs for data collection.
Chapter 3 provides the detailed process from making the initial contacts with the community college administrators to arranging the campus visitations for the purpose of administering the surveys and conducting the interview sessions with the research participant groups.

Each of the community colleges that agreed to participate in the study had three sample groups: students, faculty, and administrators. The research consisted of two mixed methodologies: survey and phenomenological research. The student group completed the Grading Faculty survey (Appendix F) which was administered by the researcher during a regularly scheduled class session. The faculty participants completed a similar Grading Faculty survey (Appendix G) following a small group 90-minute interview session. Analyses of the survey data were completed by the researcher using SPSS version 11.5 statistical software. Descriptive and inferential statistics were used to analyze the survey data for Research Questions 1 and 2.

Faculty and administrators were interviewed in separate 90-minute sessions of small focus groups ranging from two to five volunteer participants. The interviews were semi-structured and audio taped. Interview prompts (Appendix D & E) were designed to elicit detailed verbal descriptions of how student ratings were used by the faculty and administrator groups to evaluate and affect teaching performance. The essential structure of the value of student ratings for the faculty and administrator groups was extracted from these descriptions using a phenomenological analyses approach suggested by Moustakas (1994).
Delimitations

This research was conducted with the following delimitations:

1. The results from this study were limited to the students of the Florida community colleges that participated in this study. The students were enrolled in 2000-level courses and had previous experience evaluating faculty through student ratings.

2. The study focused only on the value of student ratings to the sample populations of students, faculty, and administrators who participated in this study.

Significance of the Study

Involving students in the evaluation of their professors is a standard practice in the United States higher education system. However, limited research has been conducted on how the student ratings data are used by community college personnel to improve teaching effectiveness. For the evaluation process to be effective, this study was conducted to increase awareness of the perceptions community college students have of the student ratings practice and how they believed the student ratings data are used. Understanding this relationship may result in adjustments to the current practice or development of alternative methods for involving students in the faculty evaluation process. Further, identifying how community college faculty and administrators currently use the student ratings data provides institutions information on their investment of time, personnel, and money in the SRT process. The significance of this study was to examine the perceptions that community college students, faculty, and administrators have of the
formal evaluation of faculty by students and how the student ratings data impacted instruction and evaluation. It is only through involving all stakeholders in questioning the value of the SRT process that institutions can determine if the investment of time, money, and human capital are achieving the intended purpose of evaluation—promoting a cycle of instructional improvement. This study was conducted to enhance existing knowledge in the research area of formal student evaluation of teaching effectiveness.

Organization of the Study

Chapter 1 introduced the research topic, stated the research problem and the purpose of the study, presented the research questions with a brief overview of the methodology, and identified definitions, assumptions, and delimitations of the study. The rationale to support the significance of the study concluded Chapter 1. A review of literature on the topic of formal student evaluation of teaching effectiveness is presented in Chapter 2; it provides an overview of the evaluation issues that involve student ratings. The methodology which was used to conduct this research study is provided in Chapter 3. Chapter 4 reports the results from the statistical analyses of the survey data to answer Research Questions 1 and 2; also, Chapter 4 provides qualitative analyses of the faculty participants’ and administrators’ responses to the interview questions which correspond to Research Questions 3 and 4. In conclusion, Chapter 5 proposes an interpretation of the research data, discusses implications of the results, and offers recommendations for future studies.
CHAPTER 2
REVIEW OF THE LITERATURE

Introduction

The investigation of the literature for this research study focused on the issue of formal student evaluation of teaching in North American higher education institutions. The customary practice of institutions seeking student input into the evaluation of faculty has been through the use of rating forms to evaluate teacher effectiveness. The use of student ratings is one of the sources for evaluating college and university faculty; this source is being used extensively by American schools and progressively more throughout the world (Abrami, Theall, & Mets, 2001). In reviewing the extensive student ratings literature, the researcher sought to identify the major issues that are associated with the formal evaluation of teaching effectiveness as measured by student ratings and to determine the direction researchers were suggesting for further studies.

Chapter 2 includes six sections that provide the rationale for the present research study: Introduction, Conceptual Framework for the Evaluation of Teaching Effectiveness, Historical Overview, Status of the Student Ratings Research, New Directions for Student Ratings Research, and Summary. Section one, Introduction, provides the outline for Chapter 2. Section two presents the Conceptual Framework for the Evaluation of Teaching Effectiveness through a discussion of the characteristics of good teaching, an overview of three learning theories and three instructional approaches, and a brief review of postsecondary instructional changes. The section concludes with an example of a systems approach to improve the formal student evaluation practice. Section three,
Historical Overview, traces the history of student ratings research while section four, Status of the Student Ratings Research, highlights the research findings associated with the data from student ratings such as results of the studies on validity, reliability, and possible biasing factors. Section five, New Directions for Student Ratings Research, discusses suggestions that have been presented by researchers for new approaches to student ratings research. Section six, Summary, completes the overview of the literature research segment for this study.

Conceptual Frame for Evaluation of Teaching Effectiveness

The purposes of employee evaluation are to assess performance and provide data to defend personnel decisions. It is a common practice that occurs in most work settings where supervisors judge an employee’s effectiveness. The evaluation of faculty performance in higher education is unique in that it involves students in the role of evaluators. The students are not the teacher’s supervisors, yet the administrators in many North American higher education institutions request that students complete an evaluation on the teacher for each course during each academic semester. The students’ feedback serves as a source of evaluative information. The assumption for this practice of students evaluating faculty performance is based on the belief, that since students are with the teacher for a semester of study, the students can judge the instructional effectiveness of the teacher. Although this practice may seem logical from the administrators’ point of view, the administrators place a personnel evaluation expectation on the students. Administrators assume that the students want to participate in this activity, that the students provide honest and fair judgments of teaching effectiveness,
and that the students believe the evaluations are used for the stated purpose of the evaluation. Furthermore, administrators presuppose that faculty members believe that students should be involved in the evaluation process, that faculty members value the students’ opinions as trustworthy and objective, and that faculty members use the information to improve instructional effectiveness.

Critical to the evaluation of teaching effectiveness is an understanding of what effective teaching means. Defining the qualities of good teaching to achieve student learning has been the focus of numerous research studies. Despite research efforts, a generally accepted definition of effective teaching has not been identified (Trout, 2000; Paulsen, 2002). This fact has led researchers to suggest prudence in the use of student ratings data when making decisions about the quality of teaching effectiveness particularly when a summative decision is being made (Abrami & d’Apollonia, 1999). Most researchers support the use of student ratings because the data provide a valuable source of information about teaching quality and serve as a subjective assessment of the learning experience.

Characteristics of Good Teaching

One of the difficulties in the measurement of effective teaching is the definition of what effective teaching involves. Centra (1993) cited the following definition of good teaching which was developed by a 1987 Syracuse University committee of which he was a member: “Effective teaching produces beneficial and purposeful student learning through the use of appropriate procedures” (p. 42). The committee suggested a definition that included both functions of the teaching/learning relationship: process (what teachers
do) and outcome (student learning). Defining the term, teaching effectiveness, in this manner transformed an abstract construct into two meaningful dimensions. Identification of the qualities and skills that described good teaching could permit quantitative analyses.

Numerous researchers have asked students and faculty members to describe the qualities that they believed were important to effective teaching. Selden (1984) listed the following teaching behaviors that had been identified in numerous studies: “being well prepared for class, demonstrating comprehensive subject knowledge, motivating students, being fair and reasonable in managing the details of learning, and being sincerely interested in the subject manner and in teaching itself” (p. 133). Centra (1993) reported on the research by Feldman. Feldman’s analyses of 31 studies indicated a consistency between the faculty and student groups regarding the traits and skills that they believed exemplified good teachers. The faculty and student groups reported similar high ratings in the following attributes of effective teachers:

1. sensitivity to and concern with class level and progress
2. preparation and organization of the course
3. knowledge of the subject
4. enthusiasm (for the subject or for teaching)
5. clarity and understandability
6. availability ad helpfulness
7. fairness
8. impartiality in evaluation of students
9. quality of examinations (p. 39)

Centra (1993) maintained that “good teaching is more complicated than any list of qualities or characteristics can suggest” (p. 41) specifically because some traits can be quantified better than other teaching behaviors and because instructors exemplified teaching qualities in varying degrees. Moreover, successful teaching depended upon a unique combination of the instructor’s theory of how students learn with the instructor’s
beliefs about the most effective teaching behaviors to facilitate student learning.

Although there are varied teaching approaches which reflect a faculty member’s theory of the teaching/learning relationship, a well-designed student evaluation system should be able to determine how well faculty members promoted learning. Furthermore, effective student appraisals of teaching effectiveness are contingent upon the appropriate questions being asked of the students (Seldin, 1984).

Marsh and Roche (1997) stressed that teaching is multidimensional. Evidence for the multidimensionality perspective was based on factor analysis of the Students’ Evaluation of Educational Quality (SEEQ) inventory of teaching effectiveness. Data were collected from approximately one million SEEQ surveys. Nine factors emerged: (a) learning/value, (b) instructor enthusiasm, (c) organization/clarity, (d) group interaction, (e) individual rapport, (f) breadth of coverage, (g) examinations/grading, (h) assignments/readings, and (i) workload/difficulty. Marsh expressed concern that many “homemade” student evaluation surveys failed to reflect the multiple dimensions of teaching. Therefore, the results from such “homemade” instruments weakened their utility and seriously limited their diagnostic feedback. According to Marsh and Roche (1997):

SET instruments differ in the quality of items, the way the teaching-effectiveness construct is operationalized, and the particular dimensions that are included. The validity and the usefulness of SET information depend on the content and the coverage of the items. Poorly worded or inappropriate items will not provide useful information, whereas scores averaged across an ill-defined assortment of items offer no basis for knowing what is being measured. (p.1187)
Learning Theories and Teaching Methods

Teaching behaviors are a reflection of a teacher’s theory of how students learn (Centra, 1993). For every faculty member, the definition of effective teaching is based on personal beliefs about how students learn most effectively. Centra in defining the relationship between teaching effectiveness and a personal theory of student learning, referenced the approaches and theories identified by Fuhrmann and Grasha (as cited in Centra, 1993). They suggested three teaching methods that were grounded in three learning theories. These methods of teaching and the reciprocal theory included the following: behaviorist approach based on behaviorist theory, collaborative learning based on cognitive theory, and self-initiated learning based on humanistic theory.

The behaviorist theory indicated effective teaching depended upon the instructor creating the learning situation. Centra (1993) suggested that student rating forms would ask students to judge “if course objectives were made clear, if there was agreement between objectives and course content, and if the instructor accomplished the objectives” (p. 43-44). Lecture-based courses are an example of a behaviorist approach.

The cognitive theory of learning suggested successful teaching depended upon the teacher actively involving students in the learning situation to develop their problem-solving and critical thinking skills. Small group instruction and collaborative learning are examples of the cognitive approach.

The humanistic theory of learning emphasized learning through “self-initiated learning or learning through self-discovery….Teachers should be a model of the behaviors and values that they hope students will develop; they must become learners along with the students rather than take on the role of expert” (Centra, 1993, p. 44).
One approach is not necessarily better than another. Rather effective teaching is a unique blend of the instructor’s theory of learning with the instructional approach required for a specific learning situation. In fact, as Centra (1993) suggested, teachers may operate from multiple theories to accomplish the learning objectives; however, they tend to subscribe to a learning theory and teach according to that theory.

The student rating forms which are used to evaluate teaching effectiveness need to reflect the differences in instructional approaches. The evaluation statements on the student rating forms should be appropriate to measure the teaching behaviors needed to optimize learning. In addition, the construction of items for the rating forms must consider the learning environment. The teaching approach often depends on the intervening variable of the teaching circumstance. Distance learning requires unique teaching behaviors. Effective teaching in an online environment needs a distinct approach in order to retain students and promote learning. This is also true in other learning situations which require teaching behaviors specific to the course or program of study such as clinical settings, vocational training conditions, internships, etc.

Postsecondary Philosophical and Instructional Changes

Teaching behaviors which are used to define teaching effectiveness are being redefined. According to Abrami, Theall, and Mets (2001), “Traditional didactic forms of instruction are being replaced by more learner-centered approaches” (p. 4). This shift away from the lecture method toward student-centered classrooms may require specific modifications to student rating forms. For example, student survey items that reflect how well the instructor’s approach facilitated the learner’s role in the learning process may be
more appropriate teaching behaviors for students to assess (Abrami, Theall, & Mets, 2001). This evaluation concept is even more appropriate when applied to the students who are enrolling in the United States community colleges. Community colleges offer two-year associate degree programs, certificate programs, and community education courses. Teachers need teaching behaviors specific to the learning needs of this student population.

The United States higher education system has experienced a rapid growth in its community college sector during the last 100 years from the first junior college in Joliet, Chicago in 1901 to 1173 two-year institutions at the beginning of the twenty-first century (American Association of Community Colleges, 2004). According to the American Association of Community Colleges (AACC), community college enrollment is approximately 10.4 million students with 5.4 million enrolled in associate degree programs and 5 million students registered in noncredit programs. In contrast to the four-year colleges and universities, the primary function of community college faculty is teaching. Miller, Finley, and Vancko (2000) reported that “two-year college instructional staff members have heavy teaching loads, with four or five sections being the norm and with classes often averaging twenty to forty students” (p. 3). Miller et al. stated, “Classroom teaching quality, as judged by student evaluations of two-year and four-year instructional teaching, is quite similar even with the heavier teaching loads in two-year colleges” (p. 3). The challenges which are presented to community college teachers include an emphasis on flexibility in curriculum and instruction. Community colleges partner with businesses and industries within their communities to meet the changing needs for a trained workforce. Therefore, it is essential that community college faculty be
client-oriented not only to provide the training that is requested by the local community but also to meet the needs of an older, increasing diverse student population. This client-centered philosophy is changing the way American educators do the business of teaching in their classrooms.

Technology has modified the concept of the teaching/learning relationship; the methods used to promote learning in this environment require new or adaptations to traditional approaches. Distance learning necessitates a unique definition of teaching effectiveness for the virtual classroom. Faculty members are modifying teaching behaviors as the virtual university becomes reality. Asking students to judge teaching effectiveness for the distance learning classroom may oblige students to modify their traditional beliefs about the role of the teacher and about their role as the student. Consequently, for an effective teaching evaluation program that relies on students as a significant constituency group to evaluate teaching effectiveness, the institution needs a clearly defined policy of the purpose and process regardless of paper or electronic format (Theall & Franklin, 2001). Moreover, a successful system of evaluation hinges on the “acceptance, participation, and cooperation from a number of stakeholders” (Theall & Franklin, p.51).

A Systems Approach to Evaluation

The data from student ratings serve multiple purposes. Student responses are used as sources of information about the quality of teaching, to help teachers improve their teaching, and as evidence for promotion and tenure committees. Other uses for the results from student ratings include hiring new faculty, in the annual reviews of current faculty,
in school accreditation reviews, in selecting teaching award nominees, and in course assignments (Kulik, 2001). Student ratings have become increasingly popular because they are easy to administer and provide a quantitative score; however, the data from the results have been misused (Seldin, 1984; Theall & Franklin, 2001).

In discussing the issue of student ratings, researchers including Abrami, Theall, and Mets (2001) and Ory (2001) maintained that data from student ratings provide one important factor in the evaluation of teaching effectiveness. However, faculty performance in higher education involves more than teaching. Depending upon the institution, faculty performance also requires research, service to the college, and professional development. In addition to student ratings, there are other sources to evaluate teaching effectiveness including teacher self-analysis, peer observations, supervisor evaluations, and alumni surveys. For these reasons, the data from student ratings should not be used as the sole evidence of teaching effectiveness.

The research literature indicated an increasing use of student ratings to evaluate teaching in higher education. This fact has intensified faculty discussions of this method of evaluation and has encouraged student ratings research. Current researchers emphasized the vital role that higher education administrators must assume as their institutions’ develop formal evaluation programs. It is essential that the student ratings system which is adopted by each institution be accepted, valued, and useful for all stakeholders. Theall and Franklin (2001) suggested the following guidelines for developing a comprehensive and effective evaluation system:

1. Establish the purpose of the evaluation and the uses and users of ratings beforehand.
2. Include all stakeholders in decisions about evaluation process and policy.
3. Publicly present clear information about the evaluation criteria, process, and procedures.
4. Produce reports that can be understood easily and accurately.
5. Educate the users of ratings results to avoid misuse and misinterpretation.
6. Keep a balance between individual and institutional needs in mind.
7. Include resources for improvement and support of teaching and teachers.
8. Keep formative evaluation confidential and separate from summative decision making.
9. Adhere to rigorous psychometric and measurement principles and practices.
10. Regularly evaluate the evaluation system.
11. Establish a legally defensible process and a system for grievances.
12. Consider the appropriate combination of evaluation data with assessment and institutional research information. (p. 52-54)

In designing an evaluation system, it is essential that there be a clear distinction in the purpose of the evaluation and the role of the evaluators. The literature suggested that the primary issues expressed by some faculty members were their uneasiness about the students being impartial evaluators and their concern that data were used for personnel evaluations. Forsyth (2003) recommended that “the audience for the evaluation must also be considered when designing the feedback system, for the kind of information that will help instructors improve their teaching may be different from the kind of information that administrators need to make decisions about salary, promotion, and tenure” (p. 262).

Historical Overview

Student evaluations of teachers in the twentieth century higher education system most likely began with the publication of the first teacher rating form which was published by Purdue University in 1927. Centra (1993) and Kulik (2001) indicated that research in student evaluation of teaching effectiveness originated with Remmers and his Purdue colleagues beginning in the late 1920s. These early researchers used the Purdue rating form to investigate the following issues: (a) the relationship of students’ grades to
their ratings of teachers, (b) the reliability of student ratings, (c) the comparison between alumni and student evaluations (Centra, 1993, p. 49).

Centra (1993) framed student evaluations into four phases: (a) the initial investigations conducted by Remmers and his Purdue University colleagues from 1927 to 1960; (b) the period of voluntary evaluation practice during the 1960s; (c) the era of validating ratings for formative and summative decisions during the 1970s; and (d) the present era beginning in 1980 with its increased emphasis on clarifying and expanding previous research using meta-analyses.

Student ratings research evolved as the use of student ratings on college campuses became more popular. Prior to the 1960s, student evaluations of teachers were not customarily done. It was not until the wave of student unrest on college campuses during the 1960s that students began demanding a stronger voice in the education they were receiving (Centra, 1993). As a reaction to student discontent, many colleges initiated a voluntary system of student evaluation. Faculty members managed the process with very little administrative involvement. Teachers who chose to use the student evaluation forms generally used the results for personal advisement on teaching practices. Since college evaluation systems were not well developed, tenure and promotion decisions were typically automatic (Centra, 1979). Colleges were dealing with expanding enrollment and needed to maintain faculty. Consequently, results from student ratings were not systematically included in personnel decisions.

During the 1970s, student evaluations began to play a more important role in tenure and promotion decisions. Enrollment trends were changing; budgets were decreasing. These two factors affected faculty hiring and retention practices. Tenure and
promotion decisions were no longer automatic. Centra (1979) indicated that teachers had to prove that they were tenure worthy. Pressure for instructional improvements was coming from students, parents, and legislators. Teachers in America’s higher education system were being held to higher accountability pressures. Furthermore, the new era of increased litigation required that institutions adopt systematic faculty evaluation processes. Student evaluations of teaching became more formal and centrally controlled by the institutions. Documentation of teaching effectiveness from sources such as student ratings became more valued by the administration particularly after research studies supported that student ratings were valid measures of teaching effectiveness (Centra, 1993). The research of Selden (1999) documented the increased reliance on student ratings as a measure of effective teaching. Approximately 55% of the 680 liberal arts colleges that Selden surveyed used student ratings in 1978; the number increased to 88% of the 598 colleges surveyed in 1998.

Historical trend analyses of the student ratings research by Greenwald (1997) revealed a surge in ratings research during the period of 1976 to 1980. This coincided with the increased adoption of formal evaluation of student ratings on college campuses. Greenwald reported that the number of research publications increased from 21 documents to 71 documents from the previous five-year period of 1971 to 1975. This represented a 238% increase in studies examining student ratings. During the 25-year timeframe from 1971 to 1995, research efforts primarily focused on the validity of student ratings; research studies supported validity more than invalidity (Greenwald, 1997).
According to Marsh and Roche (1999), “SETs are one of the most widely researched systems of personnel evaluation and one of the best in terms of empirical support for validity and relative freedom from bias” (p. 517). Miller, Finley, and Vancko (2000) raised the issue that very little of the student ratings research has concentrated on two-year colleges; however, they maintained that “until studies are performed within the two-year sector that provide contrary findings, the validity levels of two-year students as evaluators of faculty performance are assumed to be very similar to those for the four-year students” (p. 50).

Although the use of student ratings to evaluate teaching effectiveness is standard practice at most North American higher education institutions, faculty members remain concerned about the overemphasizes on the importance of the data. Ory (2001) expressed this concern:

The collection of student ratings is not the only way or the best way but rather one way to evaluate instruction. Our office, as well as other professionals in the field [Braskamp and Ory, 1994; Centra, 1993a; Doyle, 1983; Seldin, 1999], have advocated a multiple-source and multiple-method approach to evaluating teaching effectiveness. The collection of student ratings should be combined with data collected from different sources using various methods, such as peer reviews, teaching portfolios, classroom observations, or self-evaluations. (p. 8)

Status of the Student Ratings Research

Teaching evaluations by students has continued to gain momentum during the last 30 years, not only in the United States, but also in colleges and universities worldwide (Abrami, Theall, & Mets, 2001). Student ratings became increasingly popular because college administrators needed a systematic and official method for students to express their opinions on the quality of teaching. Furthermore, the student rating forms were easy
to administer, and the results produced quantitative information which administrators could use to gauge teaching effectiveness. The ratings data provided teachers formative feedback which they could apply to enhance their teaching effectiveness. The data served as a source of information to support personnel decisions regarding the granting of tenure and the awarding of promotion and salary increases. Although researchers supported the worth of evaluating teaching, the literature included the researchers’ uneasiness about the student ratings being used in summative decisions. The weight that student ratings carried appeared to influence administrative decisions regarding faculty careers. Faculty response to the use of student evaluations in this manner generated intense controversy; researchers sought to answer some of the issues teachers raised.

Research in the area of student evaluation of teaching has an extensive literature base. Centra (2003) stated, “No method of evaluating college teaching has been researched more than student evaluations, with well over 2,000 studies referenced in the ERIC system” (p. 495). Much of the research literature concentrated on the issues of the validity of student ratings and possible biasing factors such as class size, sex, age, and rank of the teacher. These factors were considered by some faculty to influence student assessment of teaching effectiveness.

The ideal goal of student evaluations should be to improve the teaching and learning process. Armstrong (1998) questioned the usefulness of student ratings and indicted that research has not demonstrated a relationship between the use of student ratings and improvements in learning. However, according to Centra (1993), student ratings feedback will improve teaching if four conditions are satisfied: (a) teachers learn something new and important from the results, (b) faculty value student involvement in
the ratings process and accept the feedback, (c) teachers must be able to understand the results and know how to use the information, and (d) faculty must want to change.

Validity of Student Ratings

The items on student ratings forms are intended to present the qualities which are essential to teaching for evaluation by students. The topic of early student ratings research was ratings validity. Researchers sought to determine the extent student ratings measured instructional effectiveness.

Researchers examined this question through different types of validity studies including content, criterion, and construct validity. During the 25-year period from 1971 to 1995, there were 172 studies which examined ratings validity: 77 studies favored validity, 69 studies made no claim on validity, and 26 studies concluded that there were one or more extraneous factors which contaminated student ratings (Greenwald, 1997). The research interest in validity studies changed significantly from the late 1970s, when there were 71 studies done, to the early 1990s, when there were only 8 validity studies published. Greenwald maintained that it was plausible that the major validity issues had been resolved and, thus, the decreased emphasis in research on validity.

Researchers studied the validity issue of using student ratings as a measurement of teaching effectiveness through five different research approaches: multisection, multitrait-multimethod, bias, laboratory, and dimensionality (Ory & Ryan, 2001). Multisection validity studies have supported the construct validity of student ratings (d’Apollonia & Abrami, 1997). In this type of study, multiple sections of a course which were taught by different instructors used a standard test at the end of the semester.
Ideally, all sections used the same textbook and syllabus. The average score on the student ratings per section was correlated with the average score on a standard test. d’Apollonia and Abrami (1997) indicated that this multisection validity design, which was used in more than 40 studies, provided “the most generalizable evidence for the validity of student ratings” (p. 1200).

Results from a meta-analysis reported by d’Apollonia and Abrami (1997) of 43 multisection validity studies indicated a moderate to large association between student ratings and student learning. The meta-analysis supported the existence of a relationship between the student ratings of the teacher’s General Instructional Skill and student learning; student ratings were measuring a construct of teaching effectiveness.

A single criterion of teaching effectiveness has not been identified. Researchers have not agreed on an operational definition of teaching effectiveness; however, most researchers agree that teaching is a multifaceted activity that includes numerous dimensions of effectiveness. “The most acceptable criterion for good teaching is student learning. There are consistently high correlations between students’ ratings of the ‘amount learned’ in the course and their overall ratings of the teacher and the course” (Theall & Franklin, 2001, p. 49). According to Theall and Franklin, this relationship between ratings and learning provided strong support for the validity of student ratings. Marsh and Roche (1999) argued that it is difficult to operationalize teaching effectiveness through objective measures of learning. Attempts to compare teaching effectiveness based on objective measures between individual teachers in different courses presented “insurmountable psychometric, design, and logistic problems” (p.517). Marsh and Roche maintained that effective teaching included other indicators such as “different aspects of
learning, competency, and understanding; professional growth; appropriate attitudes; a sense of mastery; plans to pursue the subject; future coursework selection” (p. 517), which are factors that cannot be measured by final examination performance. However, they concluded that multisection validity studies which have operationalized student learning supported SET validity.

For student ratings to produce valid and reliable data about teaching effectiveness, Franklin (2001) indicated that the following four elements were essential:

1. Ratings questionnaires must be properly constructed and administered.
2. Ratings data must be summarized in formats that provide readers with essential information about response rates, frequencies, average or typical (mean or modal) response, information about the spread or dispersion of student responses, and if possible, benchmarks based on a criterion or normative data.
3. Those who will use the data must have the information they need for analysis and interpretation using the reports as provided.
4. The interpretations and conclusions that result must be evaluated and applied in the context of a well-constructed, comprehensive, and effectively implemented system for evaluating teaching. (p. 87)

Franklin (2001) suggested that common problems with student ratings result from bad data or data “that are potentially misleading or uninformative” (p. 89). This results from poorly constructed or unsuitable questionnaires, or improperly administered surveys. Furthermore, problems may occur in data processing, analyses, or reporting. The results from the student ratings are quickly invalidated if problems exist with the evaluation procedures.

Overall, student ratings are considered valid measures of teaching effectiveness and useful in the evaluation process (d’Apollonia & Abrami, 1997; Marsh & Roche, 1997; McKeachie, 1997). Other researchers (Gillmore & Greenwald, 1999), though they acknowledge student ratings’ validity and their usefulness in giving students the
sanctioned opportunity to express their opinions, expressed the need to improve validity by attending to the possible bias caused by the leniency effect. Gillmore and Greenwald (1999) contend that the correlation between positive course grades and course ratings might be “explained by the theory that lenient grading, independently of quality of instruction, increases student ratings” (p. 518). They recommended using statistical adjustment to reduce this possible biasing factor.

Ory and Ryan (2001) recognized that multisection validity studies provided some evidence for the validity of student ratings and that this was supported by “the large body of research results that revealed few, if any, potentially biasing influences on the rating process” (p.40). However, Ory and Ryan, in referencing the changing concept of validity assessment as included in the American Psychological Association revised Standards for Educational and Psychological Testing, proposed an enhanced research direction for the validation of student ratings. Ory and Ryan based their suggestion on the assessment of construct validity as recommended by Messick, who maintained that the traditional methods of examining validity through content, criterion, and construct studies were incomplete measures of validation. Messick (1995) indicated that there needed to be a unified concept for construct validity assessment to include six dimensions: content, substantive, structural, generalizability, external, and consequential. Two important consequential aspects that need further research include research on the uses and the consequences of student ratings data.

Examining the assessment of the validity of student ratings through a revised conceptual framework as suggested by Messick (1995) may help both the supporters and critics of SRTs reach similar conclusions. According to Olivares (2003), “…supporters
have focused on justifying their conclusions regarding the validity of SRTs; critics have focused on examining the validity of the inferences…Thus, supporters and critics of SRTs have focused on research that confirms or supports their own findings” (p. 239).

The validity of any questionnaire depends upon identifying the construct to be measured, in this case teaching effectiveness, and developing questions that can measure the construct. Franklin (2001) maintained there must be a relationship between the questions being asked and the students’ ability to observe and, thus, measure the construct. With the exception of a few questions, most student ratings questionnaires provide an acceptable source of data regarding teaching effectiveness (Franklin, 2001).

Reliability of Student Ratings

The reliability of an instrument is generally defined as the consistency, accuracy, or stability of the measurement results. In regards to student ratings of instructors, consistency refers to the agreement among students within a class; stability refers to the agreement among raters judging the same teacher at different times while using the same evaluation instrument (Braskamp & Ory, 1994). Numerous studies have examined the reliability of student ratings. Theall and Franklin (2001) summarized the research literature on student ratings reliability: “Whether reliability is measured within classes, across classes, over time, or in other ways, student ratings are remarkably consistent” (p. 50). Forsyth (2003) indicated that there was a general agreement in the ratings research literature concerning the reliability of SETs: “…students’ evaluations of a given instructor are reasonably stable across different rating forms, times (e.g. mid-term vs.
end-of-term rating periods and immediately after class vs. delayed postclass follow-up), and courses taught in the same year” (p. 263).

Braskamp and Ory (1994) contended that students are a valuable source of information when they are asked to make judgments on topics such as the following:

1. Student-instructor relationships
2. Their views of the instructor’s professional and ethical behavior
3. Their work load
4. What they have learned in the course
5. Fairness of grading
6. The instructor’s ability to communicate clearly (p. 99)

However, Braskamp and Ory maintained that students are not the appropriate evaluators for the quality of the course content or the instructor’s expertise in the field. Therefore, it is critical that faculty assessment instruments be designed to provide the feedback which students can provide. The results would then be of greater value, and the data which are provided would be more credible.

Centra (1993) emphasized the importance of the number of students completing questionnaires for each course and reported that the reliability coefficient increases from approximately .20 for 1 student rater to above .70 for 10 student raters. The reliability coefficient increases to above .90 for 25 students. Therefore, the reliability of the student evaluation instrument increases with the number of student raters in a class. In addition, the number of students who complete the survey should be a representative sample of the enrollment for that class. Centra suggested that although 15 students may provide a reliable measure, the results may not be accurate if less than two-thirds of the class responded to the survey.
If the results from student evaluations were to be used for tenure and promotion decisions, Centra (1993) stressed that a reliable assessment of a faculty member’s ratings should be considered not only by the number of student raters per course but also by the number of courses. Based on their research into the number of courses necessary for there to be a reliable assessment of student ratings, Gilmore, Kane, and Naccarato (as cited in Centra, 1993) concluded the following:

…ratings of at least five courses with at least fifteen students rating each one (thus providing a reliable estimate of each) are needed if the rating will be used in administrative decisions. If fewer than fifteen students make the ratings, then more than five courses—preferably ten—should be rated. (p. 58)

Possible Biasing Factors

Although much is known about student ratings, some misconceptions continue. Some myths have continued to be popular despite the research evidence. Studies have examined variables that could influence student ratings and, thus, affect the validity of using SRTs to assess teaching effectiveness. The commonly accepted definition of bias among researchers refers “to variables that are irrelevant or extraneous to teaching and affect ratings. Put another way, variables that affect ratings, are beyond the purview of the teacher, and are not related to the content and teaching of the course…” (Olivares, 2003, p.238).

Theall and Franklin (2001), d’Apollonia and Abrami (1997), McKeachie (1997), and Marsh and Roche (1997) agreed that research has shown little evidence of bias in ratings. Furthermore, Ory and Ryan (2001) stated, “What influences have been found can be controlled or accounted for by the users of student ratings” (p. 40). However, Centra
(1993) suggested that ratings interpretation should be made only after considering how the student, course, or teacher characteristics may affect student ratings. According to Centra (1993), “Individually, most characteristics do not have an undue influence, but the combination of several characteristics may” (p. 66). To lessen possible biasing factors, Centra suggested the importance of considering “several different courses over several years” (p. 78) when using the data from student ratings for tenure and promotion decisions.

Some factors which have been researched as potentially affecting student ratings include the following: student characteristics, course characteristics, and teacher characteristics. Some of the student characteristics which have been researched for possible biasing effects include academic ability as measured by grade point average and age. These factors have shown little relationship to student ratings (Centra, 1993). The research does not support the myth that good or mature students provide more valid student ratings than less capable or younger students.

Some of the course characteristics which were studied included factors such as class size, subject discipline, required versus elective course, time of day, level of difficulty, and innovation. Research showed class size had almost no effect on student ratings (Ory, 2001; Lesser & Ferrand, 2000; Centra, 1993). However, some researchers suggested that student ratings were slightly biased by discipline. Students rated physical sciences and engineering courses lower than courses in the humanities or social and behavioral sciences. Furthermore, elective or major field courses were rated slightly higher by students than required courses. Student ratings were not affected by the time of day when class was in session. Conversely, Franklin (2001) reported that summer courses
received higher ratings than similar courses held during fall or spring term. Seldin (1984) raised the issue of the frequency of student ratings and the possibility of “evaluation fatigue” (p. 138) if students were expected to complete evaluations in every course for each term. A popular myth held by some faculty was the belief that less difficult courses or courses with less work load were rated higher. Centra (2003) investigated over 50,000 college courses that used the Student Instructional Report II. Results from this research indicated that “courses were rated lower when they were rated as either difficult or too elementary. Courses rated at the ‘just right’ level received the highest evaluations” (Centra, 2003, p. 495). According to Centra,

> What these findings indicate is that teachers will receive better evaluations when their courses are manageable for students. In other words, students will view instruction as most effective when it is at their level of preparation and ability rather than too difficult, when the course workload is close to what other courses demand rather than much heavier, and when the pace at which material is covered is about right for them rather than too fast. (p. 515)

Interestingly, teachers who were attempting innovative changes by teaching new or revised courses often were rated lower than anticipated the first time the course was offered (Franklin, 2001).

Finally, some of the teacher characteristics which were studied but showed no significant relationship to student ratings include the gender and the race of the instructor. Ory (2001) reported that teacher age, rank, years of experience, and research productivity demonstrated “minimal impact on student ratings” (p. 6).

Greenwald and Gillmore (1997) maintained that ratings were biased by the leniency effect based on a theory that lenient grading increases student ratings. This issue created considerable controversy within academia. Edwards (2000) stated, “The existence
of grade inflation over the past 30 years has been consistently documented….Chief among the causes are … an increased use of student evaluations of faculty” (p.538). However, research does not support a lenient grading bias. Lesser and Ferrand (2000) conducted research at a Maryland community college on the influence of three factors, one of which was grades given, on student opinion of instruction. Results from this study indicated there was no relationship between grades given and student opinion of instruction ratings; the reported correlation coefficient was .18, with a p value of .113.

Centra (2003) examined the influence of expected final course grades on ratings of teachers. The study sample included 55,000 classes from 2-year and 4-year colleges. Results indicated “minimal effect of expected grades on course evaluations” (p. 514). Centra’s research showed no evidence to support grading leniency. On the contrary, Centra stated, “In fact, students with higher expected grades gave somewhat lower evaluations, just the opposite of a grading leniency expectation” (p. 516). However, McKeachie (1997) discussed the important issue of perceived grade inflation on a promotion committee’s judgment. If the grading pattern is higher than usual and the instructor receives strong student ratings, McKeachie maintained that the committee’s decision may be biased since committee members may suspect grade inflation.

There is no research to support the claim that popularity influenced student ratings (Theall & Franklin, 2001), nor that the personality of the teacher biased student ratings (Ory, 2001). “The influence of the personality of a teacher is important but has not been seen to invalidate or bias student ratings as one piece of evidence in assessing teaching effectiveness” (Ory, 2001, p. 4). Despite the well-known “Dr. Fox study” (Naftulin, Ware, & Donnelly, 1973) which has been used by critics to suggest that student ratings
were not measuring teaching effectiveness but instructional style, other researchers have identified numerous methodological errors in this study (Kulik, 2001). Although rating experts have not supported the claims made by the “Dr. Fox study”, this study encouraged research in educational seduction—all style, weak content—on student ratings. Centra (1993) maintained that one generalization learned from seduction research was that “by teaching more enthusiastically, teachers will receive higher ratings and their students will retain more of the course content” (p. 77).

Ory (2001) reported that the method of administering SRTs has only a slight effect on the results. In an overview of two situations that can bias student ratings, Centra (1993) maintained that whether or not students identify themselves in the ratings may be a factor if they believe doing so will influence their grades. Another circumstance which has shown to influence ratings was the presence of the instructor during ratings administration. In reporting on the research by Feldman, who indicated that ratings were slightly higher when the instructor was present, Centra (1993) emphasized that a neutral observer should oversee the administration. Moreover, Seldin (1984) recommended that survey administration be done during the last two weeks of the semester but not prior to or during final exams. Some other characteristics that have been researched and the summary of the findings as reported by Marsh and Roche (1997) included the following:

1. Level of course or year in school: graduate-level courses are rated somewhat more favorably; weak, inconsistent findings suggest upper division courses are rated higher than lower division courses.
2. Purpose of ratings: somewhat higher ratings if ratings are known to be used for tenure-promotion decisions.
3. Administrative conditions: somewhat higher if ratings are not anonymous and the instructor is present when ratings are being completed.
4. Students’ personality: mixed findings but apparently little effect, particularly because different ‘personality types’ may appear in somewhat similar numbers in different classes. (Summary of Potential Bias Interpretations)

Dunegan and Hrvnak (2003) examined student cognition or how cognitively attentive students were to the task of completing the student evaluation of teaching (SET). Their research suggested that “students might not be completing the SET instruments as deliberately and mindfully as we would hope” (p. 300). Dunegan and Hrvnak raised important concerns about deficiencies in the SET process including the possibility that the procedures may be creating the mindless manner in which students respond. In offering recommendations to improve the system, the researchers suggested that “most academic institutions have not been very active in making students feel their SET input is being used or valued” (p. 299). Improving the value of student ratings for the students and faculty may reward the institutional effort.

New Directions for Student Ratings Research

Student evaluations offer vital feedback if the teacher is responsive to the student as an evaluator. A review of the literature indicated that some SRT researchers recommended that research needed to be done in determining how seriously students perceived the system of evaluating their instructors. McKeachie (1997) suggested qualitative research was needed to clarify what students were thinking as they completed the evaluation forms. Knowing if students were reflecting on their learning experience or just aimlessly filling out the rating form would provide valuable information that could lead to improvements in item construction, instrument design, and administration procedures.
Further, additional studies were suggested by Ory and Ryan (2001) to improve validity. Ory and Ryan stated, “Research is needed to assess how students view the process and respond to the forms; how faculty administer, interpret, and use ratings to improve their instruction; and how administrators are using ratings to inform decision making” (p. 41).

Some researchers (Penny, 2003; McKeachie, 1997) maintained that the use of the information from student ratings could be improved through training personnel committees and administrators in the methods of interpreting student ratings for personnel evaluations. According to Penny (2003), SRT research has not examined the process used by administrators when they analyze ratings data and judge instructional effectiveness. Theall and Franklin (2001) suggested that future research examine ways to improve the knowledge and skills of those who use the data.

Penny emphasized that there needed to be a shift in ratings research “to increase the practical usefulness of student ratings” (p. 399). If ratings were intended to improve teacher effectiveness, Armstrong (1998) suggested that the role of the student in the learning relationship be assessed directly by asking students to respond to questions about their performance. Armstrong argued that the teaching/learning process was one of shared responsibility. Only rating the performance of teachers shifted the responsibility entirely onto the instructor. Including questions on the SRTs that probed student involvement would strengthen the connection and accountability between the role of teacher and the role of student. Questions proposed by Armstrong included the following: “Were you clear about the objectives? Were you well prepared? Were you organized?
Did you spend much time on learning tasks? Did you do the assigned work to the best of your ability? What new concepts and techniques did you master?"

McKeachie (1997) urged research to improve how SRT results were communicated to improve their utility. Ory and Ryan (2001) encouraged increased research on the “intended” and “unintended” (p. 39) consequences of the use of student ratings; such research would improve the validity of student evaluations. Some of the possible consequences, both positive and negative, of using student ratings identified by Ory and Ryan included the following:

Intended
1. Instructors collect ratings, value the input, and make improvements in their teaching and courses.
2. Instructors are rewarded for having excellent rating results (salary, promotion, awards, recognition).
3. Instructors with very low ratings are encouraged by their department to seek help, possibly from colleagues or a campus faculty development office.
4. Students perceive and use ratings as a means for indicating suggestions for improvement.
5. Students have more information on which to base their course selections.
6. Instructors use ratings as motivation to improve their teaching.
7. Students perceive ratings as a vehicle for change.

Unintended
1. Instructors alter their teaching in order to receive high ratings (lower content difficulty, provide less content, give only high grades).
2. The campus rewards poor teaching (lower faculty standards).
3. Due to their convenience, the campus looks to student ratings as the only measure of teaching quality.
4. The content of the student rating form may determine what is addressed in the classroom.
5. Students reward poor teaching by believing they can give high ratings in return for high grades.

6. Ratings are used to make discriminations between instructors that cannot be supported by the data.

7. Due to the high stakes involved, instructors fail to follow proper administration procedures.

8. The rating process becomes a meaningless activity that is performed by students and instructors only because it is mandated. (p. 39-40)

Penny (2003) asserted that a weakness of SRTs was “absence of a common language on the characteristics that constitutes effective teaching and the absence of a coherent set of benchmark standards for ratings forms” (p. 402). Penny also indicated that SRT research has not adequately examined the changing climate in higher education and its impact on the teaching professional. Finally, some researchers encouraged research into identifying ways to apply the research findings to the practice of improving teaching. Ory and Ryan (2001) suggested that “the body of literature supporting the validity of student ratings needs to be expanded to include studies of how student ratings are used on today’s campuses and what happens as a result” (p. 41).

Summary

Chapter 2 presented important research findings from the extensive literature on the phenomenon of relying on students to measure teaching effectiveness in the North American higher education system. The focus of the literature review was to investigate major issues that were associated with the practice of students’ formal evaluation of faculty through a quantitative student ratings system.
The chapter was divided into six sections that included an introduction and a summary. Section two reviewed the traits associated with effective teaching and provided a conceptual frame to describe the association between teaching approach and a teacher’s theory of learning. The experts on ratings agreed that identifying a single perfect criterion of teaching effectiveness is a virtual impossibility. Therefore, student ratings should primarily function as one source of information on teaching effectiveness since no direct correlation can be made between ratings and teaching effectiveness. Recognizing this limitation, SRT researchers emphasized the multidimensionality of teaching and the importance of defining a teaching-effectiveness construct. This construct must be properly reflected in the development of student ratings instruments.

Experts suggested that there was not a perfect instrument appropriate for all teaching situations and cautioned about possible misuse of the student ratings data. Furthermore, the quality of information from SRTs depended not only on the ratings instrument but also on the administration procedures. Issues with data processing, analyses, or reporting could result in data limitations. The section continued by identifying instructional changes that were affecting postsecondary education such as the movement away from traditional lecture methods of teaching to an increased focus on collaborative and distance-learning approaches. Within the context of the changing instructional environment, it was suggested that traditional student ratings may not be a suitable method of assessing faculty effectiveness (Braskamp & Ory, 1994). The section concluded with suggestions for developing an effective evaluation program that incorporated a student ratings system which must be accepted, valued, and useful for all stakeholders.
The evolution of student evaluation of teaching effectiveness was presented in section three. From the initial investigations by Remmers in the late 1920s to the present, the student ratings system has been the most researched method of personnel evaluation. Researchers of student ratings provided extensive empirical support for ratings validity. This section also presented the shifting purposes of the student ratings evaluation system. During the early period of the twentieth century, student evaluations were rarely used in higher education. It was during the volatile campus climate of the 1960s when students protested “irrelevant curriculum and uninspired teachers” (Centra, 1993, p. 49) that institutions began to adopt student ratings. Though the ratings systems were initially voluntary, institutions gradually began to implement SRTs as a response to accountability pressures and increased litigation, and by the late 1970s, SRTs became standard practice at most colleges and universities throughout the United States.

Section four included some of the major research findings associated with student ratings such as results from the studies on validity, reliability, and possible biasing factors. According to Centra (1993), “…the research on student evaluations, like that on other teacher-evaluation methods, shows significant tendencies but no certainties” (p.51). Although SRTs provided administrators a sanctioned method for students to express their opinions on the quality of teaching, researchers expressed their concern about the SRT results being used as the primary source of teaching effectiveness in personnel decisions. Ratings were considered valid and reliable measures of teaching effectiveness and useful in the evaluation process but should not be used as the only measure. The research on student ratings can be summarized by the following statement by Centra (1993):

The reliability measure of student evaluations, in particular, the relative
consistency of ratings and their stability over time, are both good, providing that a sufficient number of students rate a course. The validity of student evaluations, as measured by correlations with student learning or comparisons with ratings by trained observers or alumni, is also acceptable. However, the magnitude of the correlations reported in the studies of validity and bias underscores the need to supplement student evaluation information with other sources when assessing teaching. (p. 78-79)

Most experts agreed that research showed little evidence of bias or factors that might unjustly influence ratings. Bias resulted from factors not related to a teacher’s effectiveness, but they were factors which may affect student ratings. Through studies on student, teacher, and course characteristics, some researchers recommended that faculty and administrators consider the combination of characteristics when reviewing student ratings results. For example, student ratings tended to be higher in elective courses and lower in required courses. SRTs given during final exam tended to be lower than ratings administered prior to finals. Courses in the physical sciences and engineering disciplines received lower ratings than courses in the humanities or social and behavioral sciences. Summer courses were rated higher than major semester courses. Courses that students judged as too easy or too difficult received lower ratings than courses which students judged as just right which meant the courses were meeting the students’ pace and workload expectations. These factors and others affected ratings but were not a measure of the teacher’s effectiveness. Ratings experts advised that it was important that those reviewing the data be aware of such factors.

Section five presented suggestions from researchers for new research studies to examine the many issues related to student ratings including ratings validity and utility. One of the intended consequences of student ratings as discussed by Ory and Ryan (2001) was the possibility that “students perceive and use ratings as a means for
indicating suggestions for improvement” (p. 39). Some researchers suggested that studies were needed on the effects of ratings particularly since it appeared that the student ratings trend would continue in the higher education system. Therefore, the significance of this study was to examine the perceptions that sample groups of Florida community college students, faculty members, and administrators had of the formal evaluation of faculty by students and how they believed student ratings data impacted instruction and evaluation. The study examined the question of the value of SRTs: Is the effort of doing SRTs worth the institutional investment or is it simply a routine process which has little or no effect on improving teaching effectiveness?

In the next chapter, the methodology that was used to conduct this research study is presented.
CHAPTER 3
METHODOLOGY

Introduction

Chapter three describes the mixed methodology which guided this study. In preparing to conduct the phenomenological component of the investigation, the researcher followed the methodology suggestions outlined by Moustakas (1994). This chapter reviews the process which was involved in preparing to complete the study including defining the problem statement and the four research questions. The chapter continues with an explanation of the data collection procedures including the identification of the population and sample, and the description of the three research instruments: survey, interview questionnaire, and researcher. Finally, the chapter presents the techniques used for organizing, analyzing, and synthesizing the data. A summary section concludes the chapter.

Statement of the Problem

Colleges and universities have invested time, personnel, and money into the process of students’ evaluation of faculty through the use of student ratings of teaching. These data provide one measure of evaluating the quality and effectiveness of instruction. Despite there being positive uses of the data from student ratings, Ory and Ryan (2001) noted that there are unintended uses of the data. One example of an unintended consequence stated by Ory and Ryan was that “the rating process becomes a meaningless activity that is performed by students and instructors only because it is mandated” (2001,
Penny (2003) raised the issue that ratings research has been limited due to the research focus on “issues pertaining to validity and reliability rather than how best to use student ratings” (p. 399). This research responded to the lack of emphasis on more effective use of the data for the purpose of improving teaching effectiveness by questioning the opinions and practices of three stakeholder groups: students, faculty, and administrators. More importantly, this research raised the question of the value of SRTs: “Is the effort of doing SRTs worth the institutional investment or is it simply a routine process which has little or no effect on improving teaching effectiveness?” This core question satisfied an underlying principle for conducting a phenomenological study. Namely, the topic had both social meaning and personal significance (Moustakas, 1994). The researcher’s personal experience with student ratings as a teacher and community college department chairperson prompted the investigation. The following four questions guided the research:

1. How did students in Florida community colleges perceive the value of their role as faculty evaluators?
2. Was there a statistically significant relationship between students’ perceptions of the relevance or importance of the student survey for evaluating professors and how students believed the survey results were used?
3. What were the Florida community college faculty member respondents’ perceptions of the student evaluation process and its impact on instruction?
4. What were the Florida community college administrators’ perceptions of the student evaluation process and its impact on instruction and faculty evaluation?
Population and Sample

Six of the 28 community colleges located in the state of Florida were invited to participate in the study; this sample of six was chosen based on similarity in enrollment size to the college with which the researcher was affiliated. Five of the six community colleges accepted the invitation. The 5 institutions had an annual unduplicated student headcount enrollment in 2002-2003 between 22,900 and 34,000 (U.S. Department of Education, National Center for Education Statistics, 2004). These 5 institutions represented 17.5% of Florida’s public 2-year institutional enrollment of 795,319 during 2002-2003. See Appendix A for a comparison of Florida community colleges by enrollment size as measured by unduplicated student headcount.

The assistance of the academic vice-presidents from each of the community colleges was requested to identify the research participants for each of the three sample groups: students, faculty, and administrators. The student group included a purposeful sample of students enrolled in second year courses which were identified as sophomore-level courses beginning with the course number 2. It was assumed that students at this level had previous experience using the student rating forms. In a memo (Appendix K) outlining the population sample needs for the study, the researcher asked each academic vice president to identify from three to five classes that were in session during the morning, afternoon, and evening. The memo indicated that the researcher would administer the survey to the students with the faculty member’s permission. Subsequently, the arrangement for the classroom visits was facilitated by faculty members who responded to their vice president’s call for participants and who volunteered to allow their students to participate in the study. Therefore, the original
request for a cross-section of from three to five classes that represented day, afternoon, and evening courses was not possible at every institution as indicated in Table 1.

Table 1: Number of Community College Classes Surveyed

<table>
<thead>
<tr>
<th>College</th>
<th>Time</th>
<th>Morning</th>
<th>Afternoon</th>
<th>Evening</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note. n = 17. Each college was assigned an identification number from 1 through 5 that represented the order of the researcher’s visit for data collection.

The memo of needs (Appendix K) that was provided to each vice president also identified the sample size of 40 to 80 student participants to represent each college. Although most of the community colleges were able to provide the minimum of 40 students to complete the survey, only one college was able to provide the maximum requested number of 80 students to complete the ten-minute survey during a regular class session.

The assistance of each college’s academic vice president was also solicited to obtain volunteer participants for the faculty and administrator groups. In the memo detailing the population sample needs, it was requested that there be from four to five
faculty volunteers representing the following categories: tenured, non-tenured, adjunct, Faculty Senate officer, and faculty development representative. Furthermore, the memo asked for from two to four volunteer representatives from the ranks of academic vice-president, dean, and department chair to participate in the administrator interview session. Table 2 shows the number of college participants from each of the three sample groups.

Table 2: Profile of Community College Participants

<table>
<thead>
<tr>
<th>Number of Participants</th>
<th>College 1</th>
<th>College 2</th>
<th>College 3</th>
<th>College 4</th>
<th>College 5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students</td>
<td>116</td>
<td>36</td>
<td>64</td>
<td>59</td>
<td>45</td>
<td>320</td>
</tr>
<tr>
<td>Faculty</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>Administrators</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>17</td>
</tr>
</tbody>
</table>

\(n = 358.\)

Demographic information for the student group was supplied by each student at the time of survey administration. The students were asked to complete four demographic questions including identifying their gender; age; program of study—associate of arts, associate of science, associate of applied science, vocational interest, or personal interest; and the approximate number of college credits earned. For students who marked more than one program of study, the first program that the student indicated was included in the calculation. A frequency analyses and descriptive profile for the student group are presented in the following three tables. The student sample included 320 participants (see Table 3). There were more female participants \((n = 203)\) than male participants \((n = 116)\).
The majority of students (60%) identified the associate of arts as their program of study. The associate of science program was identified by 27.2% of the students followed by the associate of applied science (8.4%), personal interest (3.4%), and vocational certificate programs (0.6%).

Table 3: Frequency Analysis of Student Survey Group ($n = 320$)

<table>
<thead>
<tr>
<th>Demographic Variable</th>
<th>Response Frequency</th>
<th>Response Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>203</td>
<td>63.4</td>
</tr>
<tr>
<td>Male</td>
<td>116</td>
<td>36.3</td>
</tr>
<tr>
<td>No Response</td>
<td>1</td>
<td>.3</td>
</tr>
<tr>
<td>Total</td>
<td>320</td>
<td>100.0</td>
</tr>
<tr>
<td>Program of Study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Associate of Arts</td>
<td>192</td>
<td>60.0</td>
</tr>
<tr>
<td>Associate of Science</td>
<td>87</td>
<td>27.2</td>
</tr>
<tr>
<td>Associate of Applied Science</td>
<td>27</td>
<td>8.5</td>
</tr>
<tr>
<td>Vocational Certificate</td>
<td>2</td>
<td>0.6</td>
</tr>
<tr>
<td>Personal Interest</td>
<td>11</td>
<td>3.4</td>
</tr>
<tr>
<td>No Response</td>
<td>1</td>
<td>.3</td>
</tr>
<tr>
<td>Total</td>
<td>320</td>
<td>100.0</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>313</td>
<td>97.8</td>
</tr>
<tr>
<td>No Response</td>
<td>7</td>
<td>2.2</td>
</tr>
<tr>
<td>Total</td>
<td>320</td>
<td>100.0</td>
</tr>
<tr>
<td>Credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>295</td>
<td>92.2</td>
</tr>
<tr>
<td>No Response</td>
<td>25</td>
<td>7.8</td>
</tr>
<tr>
<td>Total</td>
<td>320</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 4 profiles the age description. The mean age for the student group was 25.13 years old; the ages ranged from 18 to 56 years old. The most frequent age reported was 21 ($n = 57$). Seven students did not respond to the age question.
Table 4: Age Profile of Student Group

<table>
<thead>
<tr>
<th>Age</th>
<th>n</th>
<th>Mean</th>
<th>Median</th>
<th>Mode</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>313</td>
<td>25.13</td>
<td>21</td>
<td>21</td>
<td>18</td>
<td>56</td>
</tr>
</tbody>
</table>

Note. 7 students did not respond to the age question.

Table 5 describes the data provided by the students on the number of college credits or semester hours earned. Nearly 8% ($n = 25$) of the students did not answer or misunderstood this question. Of the 295 students who responded with usable data, the mean number of credits earned was 47.03. Twenty-five students reported having earned 60 credits; this was the most frequent number of credits reported. One student reported earning 300 credits. Although this may appear to be an anomaly, community colleges have begun to see an increased enrollment from students who have completed degrees but are returning to the community college for additional or other career training options.

Table 5: Profile of College Credits Earned by Student Group

<table>
<thead>
<tr>
<th>College Credits</th>
<th>n</th>
<th>Mean</th>
<th>Median</th>
<th>Mode</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>295</td>
<td>47.03</td>
<td>47</td>
<td>60</td>
<td>0*</td>
<td>300</td>
</tr>
</tbody>
</table>

Note. 25 students either did not respond or misunderstood the survey question: “Approximately how many college credits (or semester hours) have you earned to-date?”
1 student reported 0 credits. The researcher believes either the student misunderstood the question or was a transfer student who might have thought he should only report the credits he had earned from the college he was currently enrolled.

Each community college vice president requested volunteer faculty participants. However, it was difficult to arrange an interview schedule so that a faculty member from each category could participate. For example, only one adjunct faculty member was
available to participate in the interview sessions. Demographic information for the faculty group was supplied by each faculty member at the time of survey administration. The survey was completed by each faculty member at the conclusion of the 90-minute interview session. As part of the survey, the faculty members were asked to complete six demographic questions including identifying their gender; faculty employment status—adjunct or full time; faculty position—non-tenured or tenured; faculty rank—instructor, assistant professor, associate professor, professor, or senior professor; and area of primary instruction—college preparatory, associate of arts general education, associate of science/associate of applied science, vocational certificate, or combination of the above; and total years teaching in higher education. The demographic profile for the faculty group is presented in Table 6. The faculty group \(n =21 \) included more female (61.9%) than male (38.1%) participants. Faculty members were primarily full time (95.2%). One part time instructor contributed to the study. The majority of teachers indicated that they were tenured (66.7%). The most frequent rank identified was associate professor (38.1%). Most of the faculty taught either in the associate of arts general education programs (38.1%) or the associate of science/associate of applied science programs (28.6%). The number of years of higher education teaching ranged from 2 years to 31 years \(M =16.48 \).
Table 6: Demographic Profile of Faculty Group

<table>
<thead>
<tr>
<th>Demographic Variable</th>
<th>Response Frequency</th>
<th>Response Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>13</td>
<td>61.9</td>
</tr>
<tr>
<td>Male</td>
<td>8</td>
<td>38.1</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>100.0</td>
</tr>
<tr>
<td>Faculty Employment Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjunct</td>
<td>1</td>
<td>4.8</td>
</tr>
<tr>
<td>Full time</td>
<td>20</td>
<td>95.2</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>100.0</td>
</tr>
<tr>
<td>Faculty Position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-tenured</td>
<td>7</td>
<td>33.3</td>
</tr>
<tr>
<td>Tenured</td>
<td>14</td>
<td>66.7</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>100.0</td>
</tr>
<tr>
<td>Faculty Rank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor</td>
<td>2</td>
<td>9.5</td>
</tr>
<tr>
<td>Assistant Professor</td>
<td>3</td>
<td>14.3</td>
</tr>
<tr>
<td>Associate Professor</td>
<td>8</td>
<td>38.1</td>
</tr>
<tr>
<td>Professor</td>
<td>6</td>
<td>28.6</td>
</tr>
<tr>
<td>Senior Professor</td>
<td>2</td>
<td>9.5</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>100.0</td>
</tr>
<tr>
<td>Primary Area of Instruction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>College Preparatory</td>
<td>1</td>
<td>4.8</td>
</tr>
<tr>
<td>Associate of Arts General Education</td>
<td>8</td>
<td>38.1</td>
</tr>
<tr>
<td>Associate of Science/Associate of Applied Science</td>
<td>6</td>
<td>28.6</td>
</tr>
<tr>
<td>Vocational Certificate</td>
<td>3</td>
<td>14.3</td>
</tr>
<tr>
<td>Combination of the Above</td>
<td>3</td>
<td>14.3</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>100.0</td>
</tr>
</tbody>
</table>

\[n = 21. \]

The third group was the administrator sample. With the assistance of the academic vice presidents, the researcher was able to interview 17 administrators. For purposes of this research, administrator was defined as a community college program...
manager, department chair, dean, and vice-president whose job function included
supervising and evaluating faculty. Each of the five community colleges had more than
the minimum of two participants; two of the colleges had four administrators contribute
to the interview sessions. Table 7 profiles the administrator group. There was almost
equal representation between female (52.9%) administrators and male (47.1%)
administrators. More deans or assistant deans (41.2%) participated in the interview
sessions. Vice presidents from three of the five community colleges joined in one of the
interview sessions. At one of the community colleges, the evaluation of faculty was not
conducted at the department chair level. That duty was reserved for the level of dean. At
another community college, program managers were involved in the evaluation of
faculty.

Table 7: Demographic Profile of Administrator Group

<table>
<thead>
<tr>
<th>Demographic Variable</th>
<th>Response Frequency</th>
<th>Response Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>9</td>
<td>52.9</td>
</tr>
<tr>
<td>Male</td>
<td>8</td>
<td>47.1</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Administrator Rank</th>
<th>Response Frequency</th>
<th>Response Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vice President</td>
<td>3</td>
<td>17.7</td>
</tr>
<tr>
<td>Dean/Assistant Dean</td>
<td>7</td>
<td>41.2</td>
</tr>
<tr>
<td>Director</td>
<td>2</td>
<td>11.8</td>
</tr>
<tr>
<td>Chair</td>
<td>3</td>
<td>17.7</td>
</tr>
<tr>
<td>Program Manager</td>
<td>2</td>
<td>11.8</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Instrumentation

The study consisted of two mixed methodologies: survey and phenomenological research. The researcher chose a mixed methods approach to study the issue of the value of student ratings using the opinions of those involved in the practice of either completing a student ratings form, or reviewing and using the information. To examine and understand the phenomenon or the meaning of the experience of student ratings for each stakeholder group (students, faculty members, and administrators), the researcher became one of the three instruments for data collection. The other instruments for data collection were surveys and interview questionnaires. The researcher believed it was important to meet with each of the participating groups in their college environment to obtain an objective sense of their perceptions regarding student ratings. In administering the surveys to the student and faculty groups, the researcher presented herself as a student engaged in research. By personally inviting each student and teacher to respond to the survey and by reinforcing the importance of the study, the researcher became an instrument which complemented the survey administration. Prior to engaging the teachers and administrators in a discussion on the topic of student ratings, the researcher consciously set aside preconceived ideas or prejudices concerning the value of student ratings; Moustakas (1994) refers to this practice as the Epoche process. It is a vital first step in conducting phenomenological research. It allowed the researcher to perceive and understand the phenomenon, in this case—the value of student ratings, through the experiences of others. The researcher then became an instrument to collect the thoughts and words of those individuals who had volunteered to share their experiences.
The principles for survey design recommended by Dillman (1999) guided the survey and questionnaire formation. The survey was used to collect quantitative data from the student and faculty groups, while interview questionnaires were developed as a tool to gather descriptions of the essence or value of student ratings from the faculty and administrator groups. The researcher developed the Grading Faculty survey (Appendixes F & G) to be administered to the student and faculty groups and the two interview questionnaires (Appendixes D & E) to be used with the faculty and administrator groups. The items for the survey and questionnaire instruments were based upon a review of the student ratings literature. The interview questions were used to encourage the participants to discuss and describe their personal experiences involving the student ratings practice.

Two forms of the Grading Faculty survey were used: one for the student group and another for the faculty group. Each of the 2 forms shared the same 15 statements which were designed to measure 3 dimensions: attitudes toward faculty evaluation, perceived relevance or importance of the student survey for evaluating faculty members, and perceived effects of the ratings evaluation. The 15 statements asked the students and faculty members to indicate the extent to which they agreed with the 15 perception items using a 5-point scale ranging from strongly disagree (1) to strongly agree (5). There was additional space on the survey form for participants to add opinions concerning student ratings. However, the two survey forms differed in demographic questions. Demographic questions were modified to be appropriate for the participating groups. For example, the students were asked to complete four demographic questions including identifying their gender; age; program of study—associate of arts, associate of science, associate of applied science, vocational interest, or personal interest; and the approximate number of
college credits earned. Faculty participants were asked to complete six demographic questions including identifying their gender; faculty employment status—adjunct or full time; faculty position—non-tenured or tenured; faculty rank—instructor, assistant professor, associate professor, professor, or senior professor; area of primary instruction—college preparatory, associate of arts general education, associate of science/associate of applied science, vocational certificate, or combination of the above; and the total number of teaching years in higher education.

The two interview questionnaires each contained nine items; four of the items were identical. Six of the items were open-ended questions. The items for the questionnaires were designed to evoke personal descriptions and experiences. The researcher sought to create a relaxed environment where colleagues could share with one another openly and honestly. The ten interview sessions and the two questionnaires were the tools that were used to collect the data on the value of student ratings for the faculty and administrator groups for the phenomenological segment of the study.

Instrument Validity and Reliability

The Grading Faculty survey (Appendixes F & G) measured perceptions that students and teachers have of the student ratings evaluation method and how they believed the student ratings data impacted instruction and teacher evaluation. To determine the content for the Grading Faculty survey, the researcher reviewed the student ratings literature and developed the survey items. Fifteen statements were drafted using three construct categories: attitudes toward faculty evaluation, students’ perceptions of the relevance or importance of student ratings for evaluating faculty, and how students
believed the survey results were used. These statements were then read and discussed by
four community college professionals including two teachers and two administrators.
Adjustments to the wording of the statements were made according to their suggestions,
and demographic questions were added. “When checking content validity, the test
construction alone and with the aid of others judges the extent to which the test items
present a representative sample of the universe of the content that the test is designed to
measure” (Van Dalen, 1966, p. 314).

During August 2004, the Grading Faculty survey was tested and administered to
42 undergraduate community college students. In the current study, 320 community
college students completed the survey. Based on these responses from the student sample
and data analysis software SPSS, Version 11.5 (SPSS, 2002), the dimensionality of the
15 items from the Grading Faculty instrument was analyzed using maximum likelihood
factor analysis. “Factor analysis is a technique used to identify factors that statistically
explain the variation and covariation among measures….A common use of factor
analysis is to define dimensions underlying existing measurement instruments” (Green &
Salkind, 2005, p. 312-313). The decision to rotate three factors using a Varimax rotation
procedure was based on the scree plot of the eigenvalues. The three factors accounted for
44.16% of the variable variance. The first factor, importance of student ratings, accounted
for 15.02% of the variance of the 15 variables. The second factor, effects of student
ratings, accounted for 14.80% of the variance; the third factor, beliefs about student
ratings, accounted for 14.34% of the variance. Therefore, based on the factor analysis,
the Grading Faculty instrument is a valid measure of the three constructs under
investigation. Factor analysis confirmed the construct validity of the survey.
Alpha coefficients are used to report reliability. According to Heppner and Heppner (2004), “The alpha coefficient is the most used measure of internal consistency” (p. 118). The correlation of items that are designed to measure the same construct should be above 0.7 (Heppner & Heppner). An internal reliability analysis of the Grading Faculty instrument was completed using SPSS, Version 11.5. Values for coefficient alpha indicated satisfactory reliability for each scale. The Effects of Student Ratings scale showed the highest alpha coefficient for reliability (.81). The alphas for Importance of Student Ratings and Beliefs about Student Ratings were .80 and .72, respectively. Table 8 lists the internal consistency estimates of reliability for the three scales.

Table 8: Grading Faculty Survey Instrument Reliability Analysis

<table>
<thead>
<tr>
<th>Construct/Scale</th>
<th>Number of Items</th>
<th>Cronbach’s Alpha Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Importance of Student Ratings</td>
<td>4</td>
<td>.80</td>
</tr>
<tr>
<td>Effects of Student Ratings</td>
<td>4</td>
<td>.81</td>
</tr>
<tr>
<td>Beliefs about Student Ratings</td>
<td>7</td>
<td>.72</td>
</tr>
</tbody>
</table>

$n = 15$ survey items.

Data Collection

The state of Florida has 28 community colleges. For the purpose of this study, a community college is a public 2-year postsecondary institution which awards associate degrees. During 2002-2003, Florida’s public 2-year institutional enrollment was 795,319. The researcher limited the study to seeking participation from 6 Florida institutions (see
Appendix A) that had an annual unduplicated student headcount enrollment in 2002-2003 between 22,900 and 34,000 (NCES, 2004). These colleges were similar in enrollment size to the college with which the researcher was affiliated.

In early October 2004, a notification letter (Appendix B) was sent to each of the six community college presidents and academic vice presidents notifying them of the research project. One week later, a second letter (Appendix C) was mailed to the six community college presidents and academic vice presidents. The second letter provided additional information on the research project and requested the college’s participation. A follow-up phone call to each academic vice president was made one week later. Each of the six vice presidents seemed interested in the project. Several indicated that their college had been studying the issue of student ratings. Two of the vice presidents requested that they be contacted again in January to discuss the research project. Two agreed to participate immediately while another vice president requested a delay. Only one of the six colleges did not participate. Several follow up attempts were made to this college, but there was no response from the phone calls or E-mails. Subsequently, campus visits to the five colleges for the purpose of data collection were conducted from November 2004 to February 2005.

Prior to the campus visit, each vice president was E-mailed a description outlining the project needs (Appendix K). The memo sought the vice president’s assistance with arranging a date to visit, identifying three to five classes for survey administration, arranging the faculty small-group interview session, arranging the administrator small-group interview session, and providing a list of participants’ campus addresses. The memo also described the desired sample population including the request for 40 to 80
students from sophomore level classes; 4 to 5 faculty volunteers from the categories of tenured, non-tenured, adjunct, Faculty Senate officer, and faculty development representative; and 2 to 4 administrator volunteers from the ranks of academic vice president, dean, and department chair.

Once the vice president provided the names and address of the faculty and administrator participants, each volunteer was mailed the appropriate letter of consent (Appendixes I & J) and interview questionnaire (Appendixes D & E) before the campus visit. However, in one instance, the consent letter and interview questionnaire were not mailed. There was not enough time between the date for the visit and mail delivery. Therefore, each of those volunteers was provided the material at the time of the interview session.

Data were collected from personal distribution of the Grading Faculty survey (Appendix F) by the researcher to the student groups. Faculty members volunteered their class after being notified by their college administrators about the project. A schedule for classroom visits was arranged to coincide with the faculty and administrator interview sessions. The surveys were administered at a time designated by the teacher; typically, it was done at the beginning of class. Each survey administration began with the researcher reading to the students the College Classroom Participant Verbal Consent (Appendix H). The classroom survey administrations were usually completed in less than 15 minutes. Five community colleges participated in the student survey administrations. Seventeen classes which represented 320 students completed the Grading Faculty survey. For the purposes of this research, each college was assigned a number which coincided with the order of campus visits. For example, College 1 was the first college where the researcher
visited; College 2 was the second college that was visited, etc. This number was used to code all surveys, interview questionnaires, and audio tapes. To facilitate data collection and analyses, numbers were placed on each survey which identified the college, class, and anonymous student. For example, the first class surveyed at College 1 was coded as 11.01—College 1, Class 1, and Student 1. Another example of this coding was 53.10 which would represent College 5, Class 3, and Student 10.

Interview meetings, a commonly used qualitative method, were conducted with the faculty and administrator groups in separate ninety-minute focus sessions at a location determined by the five institutions; each session was audio taped for later transcription by the researcher. There were five faculty groups which ranged from three to five faculty participants, a total of 21 teachers participated in the interview sessions. There were 5 administrator groups which ranged from 3 to 4 participants; a total of 17 administrators participated in the interview meetings. The interview sessions were usually held in a conference room or classroom. Following introductions and the collection of the informed consent letters, the researcher briefly reviewed the purpose of the investigation, confirmed participants’ willingness to be audio taped, and presented each participant with a list of the questions to be used as a reference. The questionnaires had previously been mailed along with the informed consent letters to each participant with one exception for one group. That group received the consent letter and questions at the time of the interview. The questionnaires (Appendixes D & E), which were developed to elicit specific as well as open-ended responses regarding participants’ experiences with student ratings, guided but did not limit the discussions. At the end of the faculty interview sessions, faculty members completed the Grading Faculty (Appendix G) survey. To
facilitate data collection and analyses, a number was placed on each faculty survey which identified the college, class, and anonymous teacher. This coding was similar to the coding used for the student group. An example of a coded faculty survey is 4.03 which represented College 4, Teacher 3. Creswell (1998) offered several suggestions to enhance field research; these suggestions were most helpful in facilitating the interviewing process.

A few days after each campus visit, the researcher sent each college vice president, faculty member, and administrator a personalized note of appreciation for his/her contribution to the research project.

Data Analysis

The mixed methodology which was used to conduct this research required different data analysis measures. The survey data were analyzed using descriptive and inferential statistics to address Research Questions 1 and 2. The phenomenology methods and procedures outlined by Moustakas (1994) were used to analyze the transcribed interviews and to develop a composite textural-structural statement to address Research Questions 3 and 4. In addition, inferential statistics were used in Research Question 3 to test the hypothesis that there was no statistically significant difference between the total mean survey responses between the student group and the faculty group.

Data from the 320 student surveys and the 21 faculty surveys were manually entered into the SPSS, Version 11.5 software program for data analysis. Each survey entry was checked twice by the researcher. Missing data were not included in the calculations. The most common missing information was a demographic question on the
student survey. Twenty-five students did not respond or misunderstood the following question: Approximately how many college credits (or semester hours) have you earned to-date?

Factor analysis was used to identify the constructs for the 15 survey statements. These statements grouped under three scales: beliefs about student ratings, importance of student ratings, and effects of student ratings. Table 9 illustrates the grouping of survey statements to 1 of the 3 scales.

Table 9: Correspondence of Survey Statements to Scales

<table>
<thead>
<tr>
<th>Scale</th>
<th>Survey Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beliefs About Student Ratings</td>
</tr>
<tr>
<td></td>
<td>1 – 5, 10, 15</td>
</tr>
<tr>
<td>2</td>
<td>Importance of Student Ratings</td>
</tr>
<tr>
<td></td>
<td>6 - 9</td>
</tr>
<tr>
<td>3</td>
<td>Effects of Student Ratings</td>
</tr>
<tr>
<td></td>
<td>11 - 14</td>
</tr>
</tbody>
</table>

Dependent Variables

The three scales within the Grading Faculty survey were the dependent variables. The three scales represented perceived beliefs about student ratings, perceived importance of student ratings, and perceived effects of student ratings. The scales represented the 15 opinion statements on the Grading Faculty survey.
Independent Variables

The demographic characteristics reported by the students were the independent variables. The student variables were gender, age, program of study, and college credits earned.

Research Question 1

Survey questions 1-5, 10, and 15 addressed Research Question 1: How do students in 5 Florida community colleges perceive the value of their role as faculty evaluators? These survey items reflected the scale of students’ Beliefs about Student Ratings. The students rated the 7 statements on a scale of 1 to 5 (1 = strongly disagree, 2 = disagree, 3 = neither agree nor disagree, 4 = agree, and 5 = strongly agree). First, frequency analyses were completed for the seven survey items describing this dimension. Median and mode scores were reported since these two scores are appropriate measures of central tendency for ordinal data (Lomax, 2001). Next, students’ responses from the seven statements were categorized according to perceived value to describe a composite variable, Beliefs about the Value of Student Ratings. Descriptive measures of frequency, percentage, and scale median were used to describe the students’ perceived value of student ratings. Finally, an analysis of variance (ANOVA) was used to determine if there were any significant differences between the scale mean for the seven beliefs underlying Scale 1, Beliefs about Student Ratings (dependent variables), and the student demographic characteristics (independent variables) of gender and program of study. Simple linear regression was conducted to evaluate how well the Beliefs Scale mean score (criterion) could be predicted from student age and total credits earned (predictors).
Research Question 2

Inferential and descriptive statistics were used to address Research Question 2: Is there a statistically significant relationship between students’ perceptions of the relevance or importance of the student survey for evaluating faculty and how students believe the survey results are used? First, a Pearson product-moment correlation coefficient was computed to assess the degree that the total score from the Importance of Student Ratings Scale and the total score from the Effects of Student Ratings Scale were related. The sum of the data from the 4-item Importance of Student Ratings Scale was compared to the sum of the data from the 4-item Effects of Student Ratings Scale to provide a measure of the relationship between perceived importance and perceived effects of student ratings. Next, Spearman’s rho was used to calculate the degree of correlation among the variables within each set and then between the variables of each set of ranked data. Spearman’s rho was the appropriate measure to show the possible relationship among the variables on the two scales. In addition, descriptive analysis was completed for the eight factors describing these two dimensions. Furthermore, students’ responses for each scale were categorized according to perceived value to describe two composite variables, Perceived Value of the Importance of Student Ratings and Perceived Value of the Effects of Student Ratings. Finally, the additional written comments which were provided by the students were analyzed and described. Each response was evaluated and coded into one of the three survey scales: Beliefs about Student Ratings = 1, Importance of Student Ratings = 2, and Effects of Student Ratings = 3. Comments not related to one of these scales were included in a separate category: General Comments = 4. Once the scale category was determined for each comment, the comments were again analyzed and assigned a second...
code. This code reflected the student’s perceived value of student ratings as follows: no value = 1, uncertain value = 2, and value = 3.

Research Questions 3 and 4

Research Question 3, what are the community college faculty member respondents’ perceptions of the student evaluation process and its impact on instruction, and Research Question 4, what are the community college administrators’ perceptions of the student evaluation process and its impact on instruction and faculty evaluation, were analyzed using one of the phenomenology analysis processes outlined by Moustakas (1994). The Moustakas method which was used to organize and analyze the faculty and administrator transcripts was his modification of the Stevick-Colaizzi-Keen phenomenological data analysis method (Moustakas, 1994). One adjustment to the Moustakas method was made. The Moustakas approach included an analysis of the verbatim description for each respondent. Since this study involved small focus groups in two categories, faculty and administrators, the analysis of each transcript reflected not one individual’s experience but each separate college group’s experience with student ratings.

First, the interview tapes were transcribed verbatim. Next, all relevant statements which pertained to Research Questions 3 and 4 were listed. It is important to note that only statements from the faculty group applied to Research Question 3, and only statements from the administrator group applied to Research Question 4. These statements were the “invariant horizons or meaning units of the experience” (Moustakas, 1994, p. 122). Then, these invariant meaning units were clustered into themes. From...
these themes, a textural description was constructed for each of the five faculty groups and each of the five administrator groups. Next, through a process that Moustakas referred to as imaginative variation, a structural description was constructed for each group. This analysis step examined the dynamics underlying the experience of student ratings for the participants. From the five textural descriptions and the five structural descriptions for each college, a composite textural description and a composite structural description were developed. Finally, a synthesis of the composite textural and composite structural descriptions of the student ratings experience which represented the essence or value of student ratings for each group was presented. This statement reflected a descriptive summary of the analysis regarding the participants’ perceptions of student evaluations. In addition, inferential statistics were used in Research Question 3 to test the null hypothesis that there was no statistically significant mean difference between the survey responses by the student group and the faculty group.

Summary

The phenomenon of enlisting students to rate teachers’ effectiveness within the higher education system has been studied extensively and primarily through quantitative research. Although researchers examined many variables, some researchers suggested that there needed to be more studies on students’ attitudes (Centra, 1993). Ory and Ryan (2001) postulated that an unintended outcome of the student ratings practice is that it might become an inconsequential activity that is simply done as part of an institutional directive.
This research studied the perceptions that 358 Florida community college students, faculty, and administrators held in regards to the student ratings practice. Perceptions about the value of student ratings were examined by employing both quantitative and qualitative methods. Participants’ attitudes and opinions were analyzed and presented in Chapter 4.
CHAPTER 4
ANALYSIS OF DATA

Introduction

Chapter 4 presents the results from the data analyses of the responses for the four research questions using both quantitative and qualitative methods. Data analyses included responses to the Grading Faculty survey and two questionnaires produced by the researcher using the principles for survey design recommended by Dillman (1999). Each survey statement and interview question was designed to measure participants’ opinions of student ratings and how they believed the data from student ratings influenced instruction and teacher evaluation. The purposes of this research were to: (a) assess community college students’ perceptions of the student evaluation practice; (b) assess community college faculty members’ responses to student evaluations of teachers and the extent to which instructional modifications result from student ratings; and (c) assess community college administrators’ responses to student evaluations of teachers, the extent student ratings influence administrators’ evaluations of faculty, and how the results from student ratings are used to promote instructional effectiveness. This research posed the core question of the value of SRTs: Is the effort of doing SRTs worth the institutional investment or is it simply a routine process which has little or no effect on improving teaching effectiveness?
Description of Sample Population

Six of the 28 community colleges located in the state of Florida were invited to participate in the study; this sample of 6 was chosen based on similarity in student enrollment to the college with which the researcher was affiliated. Five of the six community colleges accepted the invitation. The 5 institutions had an annual unduplicated student headcount enrollment in 2002-2003 between 22,900 and 34,000 (U.S. Department of Education, National Center for Education Statistics, 2004). These 5 institutions represented 17.5% of Florida’s public 2-year institutional enrollment of 795,319 during 2002-2003. See Appendix A for a comparison of Florida community colleges by enrollment size as measured by unduplicated student headcount.

A total of 358 participants from the 5 Florida community colleges contributed their opinions on the value of student ratings of teaching. The assistance of the academic vice-presidents from each of the five community colleges was requested to assist the researcher in scheduling an on-site visit and in identifying research participants for each of the three sample groups: students, faculty, and administrators. The student sample consisted of 320 participants, more than half were female \((n = 203) \), while the rest were male \((n = 116) \). One student did not identify gender. During fall 2004 and spring 2005, students responded to the survey (Appendix F) which was administered by the researcher during 1 of 17 class administrations. The faculty sample consisted of 21 faculty members who participated in 1 of the 5 small group interview sessions. Each interview session was conducted on location at the respective participating community college. Each faculty group consisted of between three to five teachers. The most represented faculty category was tenured at the rank of associate professor. Following the interviews, each faculty
member also completed the survey (Appendix G). The surveys were identical for both the student and faculty groups with the exception of the demographic questions. The administrator sample consisted of 17 administrators who volunteered to join in 1 of the 5 small focus interview sessions. Each interview session was conducted on location at the respective participating community college. Each administrator group consisted of between three to four administrators. The most frequent rank of administrator participant was at the level of dean or assistant dean. Responses to the surveys and questionnaires are considered to be trustworthy for all 358 volunteers. For complete demographic descriptions of the 3 sample groups, see Chapter 3, Tables 2 through 7.

Research Question 1

How did students in Florida community colleges perceive the value of their role as faculty evaluators? For this study, the definition of value referred to students’ beliefs about the usefulness, importance, or general worth of the SRT practice. Students responded to 15 survey items which measured their opinions on the practice of formal evaluation of their college teachers. The students rated the statements on a scale of 1 to 5: (1 = strongly disagree, 2 = disagree, 3 = neither agree nor disagree, 4 = agree; and 5 = strongly agree). Factor analysis was used to identify the dimensions underlying the 15 survey statements. The dimensionality of the 15 items was analyzed using the maximum likelihood estimation procedure to extract the factors from the variable data. The decision to rotate three factors using a Varimax rotation procedure was based on the scree plot of the eigenvalues. Once the factors were extracted, the rotated solution yielded three interpretable factors: Beliefs about Student Ratings, Importance of Student Ratings, and
Effects of Student Ratings. These three factors accounted for 44.16% of the variable variance. Importance of student ratings accounted for 15.02% of the variance of the 15 variables. Effects of student ratings accounted for 14.80% of the variance, and beliefs about student ratings accounted for 14.34% of the variance.

The data from the following 7 survey statements (items 1-5, 10, 15) which comprised the Beliefs about Student Ratings Scale were used to answer Research Question 1:

1. Statement 1: Students should complete formal evaluations of their instructors.
2. Statement 2: Students take the process of evaluating their instructors seriously.
3. Statement 3: Student surveys are a valuable method of evaluating instructors.
4. Statement 4: Students provide fair evaluations of their instructors.
5. Statement 5: Students know the qualities of an effective teacher.
6. Statement 10: Administrators should inform professors about the results.
7. Statement 15: A summary of the results from the student evaluations should be available online for students to review.

Research Question 1 was examined in three phases using descriptive and inferential statistics. First, responses to individual survey statements, 1-5, 10, and 15, were described. Next, a composite variable, Beliefs about the Value of Student Ratings, was created by categorizing the responses to the seven survey statements according to perceived value. Students’ responses were grouped into three value categories (no value, uncertain value, value) and then described. Finally, the relationships between the
dependent variable (Beliefs about Student Ratings scale) and independent variables (student demographic factors) were presented.

Descriptive Analysis of Survey Statements 1 – 5, 10, 15

In the first analysis phase for Research Question 1, the descriptive measures of frequency, mode, and median were used to describe the ordinal data collected from the survey responses. Median and mode scores were reported since these two scores are appropriate measures of central tendency for ordinal data (Lomax, 2001).

All 320 students responded to survey statement 1. Most of the students (88.1%) agreed or strongly agreed that students should complete formal evaluations of their instructors (see Table 10). Less than 2% disagreed or strongly disagreed with students’ completing ratings evaluations on their teachers. Moreover, 10% neither agreed nor disagreed with this statement. Overall, a large majority of the community college students believed that students should complete formal teacher evaluations.

As illustrated in Table 11, although 45.3% of the respondents agreed or strongly agreed that students took the process of evaluating their instructors seriously, 30% of the students disagreed or strongly disagreed with this statement. Nearly 25% of the students neither agreed nor disagreed with this statement. Overall, nearly half of the community college students believed that students took the process of evaluating their teachers seriously, but slightly over half of the students did not believe this to be a fact or did not know.
Table 10: Frequency Analysis for Survey Statement 1

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Disagree</td>
<td>5</td>
<td>1.6%</td>
</tr>
<tr>
<td>Disagree</td>
<td>1</td>
<td>0.3%</td>
</tr>
<tr>
<td>Neither Agree nor Disagree</td>
<td>32</td>
<td>10.0%</td>
</tr>
<tr>
<td>Agree</td>
<td>131</td>
<td>40.9%</td>
</tr>
<tr>
<td>Strongly Agree</td>
<td>151</td>
<td>47.2%</td>
</tr>
<tr>
<td>Total</td>
<td>320</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 11: Frequency Analysis for Survey Statement 2

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Disagree</td>
<td>21</td>
<td>6.6%</td>
</tr>
<tr>
<td>Disagree</td>
<td>75</td>
<td>23.4%</td>
</tr>
<tr>
<td>Neither Agree nor Disagree</td>
<td>79</td>
<td>24.7%</td>
</tr>
<tr>
<td>Agree</td>
<td>97</td>
<td>30.3%</td>
</tr>
<tr>
<td>Strongly Agree</td>
<td>48</td>
<td>15.0%</td>
</tr>
<tr>
<td>Total</td>
<td>320</td>
<td>100%</td>
</tr>
</tbody>
</table>

The majority of students (67.2%) agreed or strongly agreed with the survey statement that student surveys were a valuable method of evaluating instructors (see Table 12). Although 19.4% of the respondents neither agreed nor disagreed with this statement, 13.1% of the students disagreed or strongly disagreed. One student did not respond to this survey item. Overall, most students believed that student surveys were important.

Table 12: Frequency Analysis for Survey Statement 3

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Disagree</td>
<td>3</td>
<td>.9%</td>
</tr>
<tr>
<td>Disagree</td>
<td>39</td>
<td>12.2%</td>
</tr>
<tr>
<td>Neither Agree nor Disagree</td>
<td>62</td>
<td>19.4%</td>
</tr>
<tr>
<td>Agree</td>
<td>141</td>
<td>44.1%</td>
</tr>
<tr>
<td>Strongly Agree</td>
<td>74</td>
<td>23.1%</td>
</tr>
<tr>
<td>Total</td>
<td>319</td>
<td>99.7%</td>
</tr>
</tbody>
</table>

Note. 1 student did not respond to this statement. Median = 4. Mode = 4.

Table 13 illustrates that more than half of the students (50.3%) agreed or strongly agreed with the fourth survey statement which examined students’ beliefs about students providing fair evaluations. However, 29.4% of the respondents neither agreed nor disagreed that students provided fair evaluations of their instructors. Moreover, 20% of
the students disagreed or strongly disagreed with this statement. Overall, students were equally divided between those who believed students provided fair evaluations of their instructors and those who did not believe this to be a fact or did not know.

Table 13: Frequency Analysis for Survey Statement 4

<table>
<thead>
<tr>
<th>Students provide fair evaluations of their instructors.</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Disagree</td>
<td>14</td>
<td>4.4%</td>
</tr>
<tr>
<td>Disagree</td>
<td>50</td>
<td>15.6%</td>
</tr>
<tr>
<td>Neither Agree nor Disagree</td>
<td>94</td>
<td>29.4%</td>
</tr>
<tr>
<td>Agree</td>
<td>131</td>
<td>40.9%</td>
</tr>
<tr>
<td>Strongly Agree</td>
<td>30</td>
<td>9.4%</td>
</tr>
<tr>
<td>Total</td>
<td>319</td>
<td>99.7%</td>
</tr>
</tbody>
</table>

Note. One student did not respond to this statement. Median = 4. Mode = 4.

A large majority of students (79.4%) agreed or strongly agreed with the statement that students knew the qualities of an effective teacher (see Table 14). However, 14.1% of the respondents neither agreed nor disagreed with this statement, while 6.6% of the students disagreed or strongly disagreed. Overall, a large majority of the community college student respondents believed that students recognized the characteristics of an effective teacher.
Table 14: Frequency Analysis for Survey Statement 5

<table>
<thead>
<tr>
<th>Students know the qualities of an effective teacher.</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Disagree</td>
<td>5</td>
<td>1.6%</td>
</tr>
<tr>
<td>Disagree</td>
<td>16</td>
<td>5.0%</td>
</tr>
<tr>
<td>Neither Agree nor Disagree</td>
<td>45</td>
<td>14.1%</td>
</tr>
<tr>
<td>Agree</td>
<td>158</td>
<td>49.4%</td>
</tr>
<tr>
<td>Strongly Agree</td>
<td>96</td>
<td>30.0%</td>
</tr>
<tr>
<td>Total</td>
<td>320</td>
<td>100%</td>
</tr>
</tbody>
</table>

The great majority of students (95%) agreed or strongly agreed with the statement that administrators should inform professors about the results from the student ratings (see Table 15). Less than 2% of the students disagreed or strongly disagreed with this statement, while 3.4% of the respondents neither agreed nor disagreed. Overall, the large majority of the community college students believed that college administrators should tell faculty members about the student ratings results.

The majority of community college students (79.7%) agreed or strongly agreed with the statement that a summary of the results from the student evaluations should be available online for students to review (see Table 16). Less than 10% of the students disagreed or strongly disagreed with this statement; 10.3% of the respondents neither agreed nor disagreed. Overall, a large majority of the community college students believed that a summary of student ratings should be accessible through online resources.
Table 15: Frequency Analysis for Survey Statement 10

<table>
<thead>
<tr>
<th>Statement</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrators should inform professors about the results.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strongly Disagree</td>
<td>1</td>
<td>.3%</td>
</tr>
<tr>
<td>Disagree</td>
<td>4</td>
<td>1.3%</td>
</tr>
<tr>
<td>Neither Agree nor Disagree</td>
<td>11</td>
<td>3.4%</td>
</tr>
<tr>
<td>Agree</td>
<td>103</td>
<td>32.2%</td>
</tr>
<tr>
<td>Strongly Agree</td>
<td>201</td>
<td>62.8%</td>
</tr>
<tr>
<td>Total</td>
<td>320</td>
<td>100%</td>
</tr>
</tbody>
</table>

Median = 5. Mode = 5.

Table 16: Frequency Analysis for Survey Statement 15

<table>
<thead>
<tr>
<th>Statement</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A summary of the results from the student evaluations should be available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>online for students to review.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strongly Disagree</td>
<td>15</td>
<td>4.7%</td>
</tr>
<tr>
<td>Disagree</td>
<td>16</td>
<td>5.0%</td>
</tr>
<tr>
<td>Neither Agree nor Disagree</td>
<td>33</td>
<td>10.3%</td>
</tr>
<tr>
<td>Agree</td>
<td>111</td>
<td>34.7%</td>
</tr>
<tr>
<td>Strongly Agree</td>
<td>144</td>
<td>45.0%</td>
</tr>
<tr>
<td>Total</td>
<td>319</td>
<td>99.7%</td>
</tr>
</tbody>
</table>

Note. One student did not respond to this statement.
Students most often responded strongly agree to survey statements 1, 10 and 15. Therefore, the large majority of community college students strongly believed that students should complete formal evaluations, that administrators should inform faculty about the ratings, and that a summary of the results should be available online. Furthermore, students most often responded agree to survey statements 2, 3, 4, and 5. Students generally believed that students took the process of evaluating their instructors seriously, that student surveys were a valuable method of evaluating instructors, that students provided fair evaluations of their instructors, and that students knew the qualities of an effective teacher. Only 1 of the 7 statements had a median measure of central tendency of 3 which indicated that 50% of the responses fell below the median and 50% fell above the median. This was statement 2: students take the process of evaluating their instructors seriously. Although the most frequent score for this statement was a 4, the median measure of 3 indicated that the respondents were divided on their opinions for this statement. It is noteworthy that 30% \((n = 96)\) of the students disagreed or strongly disagreed with this statement.

Descriptive Analysis of Beliefs About the Value of Ratings

In the second analysis phase for Research Question 1, students’ responses from the 7 statements were categorized according to perceived value to describe a composite variable, Beliefs about the Value of Student Ratings. Students’ responses were grouped into three belief categories and assigned a value (no value, uncertain value, value). Responses of 1 (strongly disagree) and 2 (disagree) were grouped into the first belief category: Belief 1 = no value. Responses of 3 (neither agree nor disagree) were grouped
into the second belief category: Belief 2 = uncertain value. Responses of 4 (agree) and 5 (strongly agree) were grouped into the third belief category: Belief 3 = value. Table 17 illustrates the median, frequency, and percentage measures to describe the 320 students’ general perceptions about the worth of student ratings. Results from data analysis indicated that Belief 1 (no value) was reported by 11.9% of the students. Belief 2 (uncertain value) was reported by 15.9% of the students, and Belief 3 (value) was reported by 72.2% of the students. Furthermore, the median score for the Beliefs about the Value of Student Ratings variable was 4, which suggested that the common belief among many of the 320 respondents was that student ratings had value. Therefore, the large majority of the sample group of community college students (72.2%) believed that student ratings had value, and, thus their role as instructor evaluator was important.

Table 17: Descriptive Analysis - Beliefs About the Value of Student Ratings

<table>
<thead>
<tr>
<th>Belief</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belief 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Value</td>
<td>265</td>
<td>11.9%</td>
</tr>
<tr>
<td>(Strongly Disagree to Disagree)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belief 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncertain Value</td>
<td>356</td>
<td>15.9%</td>
</tr>
<tr>
<td>(Neither Agree nor Disagree)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belief 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>1616</td>
<td>72.2%</td>
</tr>
<tr>
<td>(Agree to Strongly Agree)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scale Median = 4
Inferential Analysis

The third analysis phase for Research Question 1 examined the effects that the demographic variables (gender, program of study, age, and credits earned) had on the dependent variable (scale mean for the seven beliefs underlying Scale 1, Beliefs about Student Ratings).

Mean Differences in Beliefs as a Function of Gender

A one-way analysis of variances (ANOVA) was conducted to determine if there were any statistically significant differences between the overall Beliefs Scale mean and gender with 2 levels (male or female). Table 18 illustrates the sample size, means, and standard deviations of the dependent variable (Beliefs about Student Ratings Scale) for each level of the independent variable (gender).

Table 18: Sample Size, Mean, and Standard Deviation of Beliefs Scale by Gender

<table>
<thead>
<tr>
<th>Demographic Variable</th>
<th>n</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>116</td>
<td>3.73</td>
<td>.601</td>
</tr>
<tr>
<td>Female</td>
<td>203</td>
<td>4.01</td>
<td>.542</td>
</tr>
<tr>
<td>Total</td>
<td>319</td>
<td>3.91</td>
<td>.578</td>
</tr>
</tbody>
</table>
The assumption of homogeneity of variances was tested and met. The variances were homogenous based on Levene’s test of equality of variances \((p = .207)\). Table 19 demonstrates statistically significant differences between gender and the Beliefs about Student Ratings scale mean, \(F(1, 317) = 17.61, \ p < .01\). Since the \(p\) value for gender was less than .05, the null hypothesis was not retained. The strength of relationship between gender and Beliefs about Student Ratings, as measured by partial Eta squared (.053), was small with gender accounting for 5% of the variance of the dependent variable. There was a statistically significant difference in the means between the male \((M = 3.73, SD = .601)\) and female \((M = 4.01, SD = .542)\) respondents. The female respondents tended to respond slightly more positive than the male respondents.

Table 19: One-Way ANOVA Summary of Beliefs and Gender

<table>
<thead>
<tr>
<th>Gender</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>(F)</th>
<th>(p)</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>5.60</td>
<td>1</td>
<td>5.60</td>
<td>17.61</td>
<td>.00*</td>
<td>.053</td>
</tr>
<tr>
<td>Within Groups</td>
<td>100.76</td>
<td>317</td>
<td>.318</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>106.36</td>
<td>318</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(p < .05\).
Mean Differences in Beliefs as a Function of Program

One-way analysis of variances (ANOVA) was conducted to determine if there were any statistically significant differences between the overall Beliefs Scale mean and program of study with 5 levels (associate of arts, associate of science, associate of applied science, vocational interest, or personal interest). The assumption of homogeneity of variances was tested and met. The variances were homogenous based on Levene’s test of equality of variances ($p = .193$). Table 20 illustrates the sample size, means, and standard deviations of the dependent variable (Beliefs about Student Ratings Scale) for each level of the independent variable (program of study). Although the sample sizes for the Vocational Certificate ($n = 2$) and Personal Interest ($n = 11$) categories were small, they were retained as separate groups to profile the diversity of community college programs.

Table 20: Sample Size, Means, and Standard Deviations of Beliefs Scale by Program

<table>
<thead>
<tr>
<th>Demographic Variable</th>
<th>n</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program of Study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Associate of Arts</td>
<td>192</td>
<td>3.83</td>
<td>.585</td>
</tr>
<tr>
<td>Associate of Science</td>
<td>87</td>
<td>4.00</td>
<td>.584</td>
</tr>
<tr>
<td>Associate of Applied Science</td>
<td>27</td>
<td>4.08</td>
<td>.535</td>
</tr>
<tr>
<td>Vocational Certificate</td>
<td>2</td>
<td>3.86</td>
<td>.808</td>
</tr>
<tr>
<td>Personal Interest</td>
<td>11</td>
<td>4.00</td>
<td>.256</td>
</tr>
<tr>
<td>Total</td>
<td>319</td>
<td>3.91</td>
<td>.578</td>
</tr>
</tbody>
</table>

Note. 1 student did not respond to gender or program of study.
There was no statistically significant difference between the program of study (independent variable) and scale mean for Beliefs about Student Ratings (dependent variable). The ANOVA was not statistically significant, $F(4, 314) = 2.21, p = .068$ (see Table 21). The strength of relationship between program of study and Beliefs about Student Ratings, as measured by partial Eta squared (.027), was small with program of study accounting for 2.7% of the variance of the dependent variable.

Table 21: One-Way ANOVA Summary of Beliefs and Program of Study

<table>
<thead>
<tr>
<th>Program of Study</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>2.91</td>
<td>4</td>
<td>.728</td>
<td>2.21</td>
<td>.068</td>
<td>.027</td>
</tr>
<tr>
<td>Within Groups</td>
<td>103.44</td>
<td>314</td>
<td>.329</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>106.35</td>
<td>318</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Predicting Beliefs from Student Age

Simple linear regression was conducted to evaluate how well the Beliefs Scale score (criterion) could be predicted from student age. Simple linear regression assumptions were tested. Six cases identified as potentially influential points were removed prior to the analysis and thus the analysis presented is reflective of the absence of the outliers. A scatterplot of studentized residuals to predicted values indicated that the
assumptions of linearity and homogeneity were met. A histogram and Q-Q plot indicated the residuals were relatively normally distributed. Furthermore, skewness (-.255) and kurtosis (-.421) statistics indicated normality. Although the Shapiro Wilks tests suggested non-normality ($p < .05$), the Kolmogorov-Smirnov did not indicate significance ($p = .20$). Regression is robust to violations of non-normality with large samples greater than 30 (Dielmam, 2004). A scatterplot of studentized residuals to case number indicated the assumption of independence was met.

The scatterplot for the two variables, age and Beliefs Scale mean, was linearly related. The regression equation for predicting the Beliefs Scale mean score was

$$\text{Predicted Beliefs Scale score} = 3.629 + .012 \times \text{age}.$$

The model predicts that a change in age results in a slight increase in Beliefs Scale score of .012. The 95% confidence interval for the slope, .005 to .019, contained the value of zero; therefore, age was not significantly related to Beliefs Scale score. Accuracy in predicting Beliefs Scale score was small with a correlation between Beliefs Scale score and age of .193. Only 4% ($R^2 = .037$) of the variation in Beliefs Scale score was accounted for by its linear relationship with age. There was not a lot of practical significance. The predictor variable, age, was not accounting for a lot of variation in the criterion variable, Beliefs Scale mean.

Predicting Beliefs from Total Credits Earned

Simple linear regression was conducted to evaluate how well the Beliefs Scale mean score (criterion) could be predicted from total credits earned (predictors). Simple linear regression assumptions were again tested for the predictor variable, credits...
completed, and the criterion variable, Beliefs Scale mean. Six cases identified as potentially influential points were removed prior to the analysis and thus the analysis presented is reflective of the absence of the outliers. A review of a scatterplot of studentized residuals to predicted values indicated the assumptions of linearity and homogeneity were met. Skewness (-.246) and kurtosis (-.478) statistics indicated normality. However, Kolmogorov-Smirnov and Shapiro Wilks tests were significant ($p < .05$) suggesting non-normality.

The regression equation for predicting the Beliefs Scale score was $Predicted Beliefs Scale score = 3.862 + .001$ (credits earned). The model predicts that a change in credits earned results in a slight increase in Beliefs Scale score of .001. The 95% confidence interval for the slope, -.002 to .004, contained the value of zero; therefore, credits completed was not significantly related to Beliefs Scale score. Accuracy in predicting Beliefs Scale score was small with a correlation between Beliefs Scale score and credits earned of .04. Only .2% ($R^2 = .002$) of the variation in Beliefs Scale score was accounted for by its linear relationship with credits completed. There was slight practical significance with the number of credits completed as a predictor of Beliefs Scale score. Therefore, neither age nor credits completed could be used to predict a student’s score on the Beliefs about Student Ratings construct.

Research Question 2

Was there a statistically significant relationship between students’ perceptions of the relevance or importance of the student survey for evaluating professors and how students believed the survey results were used? This question was addressed using
descriptive and inferential statistics for 8 of the 15 survey statements. Furthermore, a
description of the students’ perceptions of the student evaluation practice was completed
using qualitative analysis of written comments provided by 124 of the students.

As explained in Chapter 3, factor analysis was used to define the dimensions
underlying the survey instrument. The 15 items were reduced to 3 dimensions. The first
scale, Beliefs About Student Ratings, included 7 survey statements. This scale was used
to address Research Question 1. Data from the other 2 scales were analyzed to address
Research Question 2. These 2 dimensions were defined as Scale 2, Importance of Student
Ratings, and Scale 3, Effects of Student Ratings.

Data from the following 4 survey statements identified the construct for Scale 2:
Perceived Importance of Student Ratings:

1. Statement 6: Student evaluations are important to the college administrators.
2. Statement 7: Student evaluations are important to the instructor.
3. Statement 8: Professors care about the opinions of their students.
4. Statement 9: Professors use class evaluations to improve their teaching.

Data from the following 4 survey statements identified the construct for Scale 3:
Perceived Effects of Student Ratings:

1. Statement 11: Professors change their grading system based on feedback from
 the evaluations.
2. Statement 12: Results from student evaluations are used to dismiss professors.
3. Statement 13: Results from student evaluations are used to promote professors.
4. Statement 14: Results from student evaluations influence faculty salary increases.

Two different correlation procedures, Pearson product-moment and Spearman’s rho, were used to examine Research Question 2. Pearson correlation coefficients were computed between the two newly created composite variables (Importance of Student Ratings and Effects of Student Ratings), and Spearman’s rho correlation coefficients were computed for each pair of individual items within the constructs using SPSS 11.5.

Correlation Between Rating Scales: Importance and Effects

First, a Pearson product-moment correlation coefficient, which is an appropriate correlation measure of interval data, was computed to assess the degree that the total score from the Importance of Student Ratings Scale and the total score from the Effects of Student Ratings Scale were related. The sum of the data from the 4-item Importance of Student Ratings Scale was compared to the sum of the data from the 4-item Effects of Student Ratings Scale to provide a measure of the relationship between perceived importance and perceived effects of student ratings. The correlation between the Importance of Student Ratings Scale and the Effects of Student Ratings Scale was statistically significant, \(r(318) = .397, p < .01 \). “…for the behavioral sciences, correlation coefficients of .10, .30, and .50, irrespective of sign, are, by convention, interpreted as small, medium, and large coefficients, respectively” (Green & Salkind, 2005, p. 256). Therefore, there was a medium positive relationship between students’ perceptions of the relevance or importance of the student survey for evaluating professors and how students believed the survey results were used.
Correlations Across Variables

Next, to understand the degree of association among the four variables within each scale and across the eight variables of the two scales, Spearman’s rank correlation coefficients were calculated to describe the relationship. “Spearman’s rank correlation coefficient is appropriate when both variables are ordinal level” (Lomax, 2001, p. 185).

Correlations Among Variables: Importance of Student Ratings

As outlined in Table 22, Spearman’s rank correlation coefficients were computed among the 4 survey items describing the Importance of Student Ratings. Using the Bonferroni approach to control for Type 1 error when multiple tests are conducted, in this case across the six correlations, a p value of less than .008 (.05/6 = .008) was required for significance. All results were based on two-tailed tests. Spearman’s rank correlation coefficients were calculated among perceived importance of student ratings to college administrators, instructor, professors caring about students’ opinions, and professors using the results for teaching improvement. The results of the correlational analyses indicated that all correlations were positive, statistically significant, and greater than or equal to .30. There was a medium relationship between perceived importance of student ratings to the college administrators (ICA) and professors caring about students’ opinions (PC), $r_s(316) = .304, p < .001$. There was a medium correlation between perceived importance of student ratings to the college administrators (ICA) and professors using the class evaluations to improve teaching (PU), $r_s(317) = .444, p < .001$. There was a medium association between perceived importance of student evaluations to the instructor (II) and professors caring about students’ opinions (PC), $r_s(317) = .444, p < .001$. There was a
large relationship between perceived importance of student ratings to the instructor (II) and professors using the class evaluations to improve teaching (PU), $r_s(318) = .515, p < .001$. There was a large association between perceived importance of professors caring about students’ opinions (PC) and professors using (PU) student ratings, $r_s(317) = .590, p < .001$. There was a large correlation between perceived importance of student ratings as being important to college administrators (ICA) and important to the instructor (II), $r_s(317) = .616, p < .001$.

Table 22: Correlation Matrix Among Measures of the Importance of Student Ratings

<table>
<thead>
<tr>
<th>Survey Statements 6 – 9</th>
<th>II</th>
<th>PC</th>
<th>PU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student evaluations are important to the college administrators. (ICA)</td>
<td>.616*</td>
<td>.304*</td>
<td>.444*</td>
</tr>
<tr>
<td></td>
<td>$n=319$</td>
<td>$n=318$</td>
<td>$n=319$</td>
</tr>
<tr>
<td>Student evaluations are important to the instructor. (II)</td>
<td>.444*</td>
<td>.515*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$n=319$</td>
<td>$n=320$</td>
<td></td>
</tr>
<tr>
<td>Professors care about the opinions of their students. (PC)</td>
<td></td>
<td></td>
<td>.590*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$n=319$</td>
</tr>
</tbody>
</table>

* Correlation was statistically significant, $p < .008$

(PU) = Professors use class evaluations to improve their teaching.

In summary, three of the relationships were considered to be moderate (importance of student ratings to college administrators and professors caring about students’ opinions, importance of student ratings to college administrators and professors using the class evaluations to improve teaching, and importance of student evaluations to the instructor and professors caring about students’ opinions), while the rest were strong.
relationships (importance of student ratings to the instructor and professor using the class evaluations to improve teaching, importance of professors caring about students’ opinions and using student ratings to improve teaching, and importance of student ratings to college administrators and instructor).

Correlations Among Variables: Effects of Student Ratings

Table 23 illustrates the measures of association among the survey items from the Effects of Student Ratings Scale. Spearman’s rank correlation coefficients were calculated among perceived effects of student ratings on professors changing their grading system, professor dismissal, professor promotion, and faculty salary increases. Using the Bonferroni approach to control for Type 1 error when multiple tests are conducted, in this analysis across the six correlations, a _p_ value of less than .008 (.05/6 = .008) was required for significance. The results of the correlational analyses indicated that all correlations were positive, statistically significant, and greater than or equal to .31. All results were based on two-tailed tests. There was a medium relationship between a perceived effect of student ratings on professors changing their grading system (PCG) and student ratings affecting salary increases (SAL), \(r_s(317) = .315, p < .001 \). There was a medium association between a perceived effect of student ratings on professors changing their grading system (PCG) and student ratings being used to dismiss professors (DIS), \(r_s(315) = .362, p < .001 \). There was a medium correlation between a perceived effect of student ratings on professors changing their grading system (PCG) and student ratings being used to promote professors (PRO), \(r_s(316) = .444, p < .001 \). There was a large association between a perceived effect of student ratings being used to dismiss professors
(DIS) and ratings influencing salary increases (SAL), \(r_s(316) = .573, p < .001. \)

Furthermore, there was a large relationship between a perceived effect of student ratings being used to dismiss professors (DIS) and ratings being used to promote professors (PRO), \(r_s(315) = .604, p < .001. \) Finally, there was a large correlation between a perceived effect of student ratings being used to promote professors (PRO) and ratings affecting salary increases (SAL), \(r_s(317) = .654, p < .001. \)

Table 23: Correlation Matrix Among Measures of the Effects of Student Ratings

<table>
<thead>
<tr>
<th>Survey Statements 11 - 14</th>
<th>DIS</th>
<th>PRO</th>
<th>SAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professors change their grading system based on feedback from the evaluations. (PCG)</td>
<td>.362* ((n=317))</td>
<td>.444* ((n=318))</td>
<td>.315* ((n=319))</td>
</tr>
<tr>
<td>Results from student evaluations are used to dismiss professors. (DIS)</td>
<td>(.604^*) ((n=317))</td>
<td>(.573^*) ((n=318))</td>
<td></td>
</tr>
<tr>
<td>Results from student evaluations are used to promote professors. (PRO)</td>
<td>(.654^*) ((n=319))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Correlation was statistically significant. \(p < .008. \)

SAL = Results from student evaluations influence salary increases.

In summary, three of the relationships were considered to be moderate (professors changing their grading system and salary increases, professors changing their grading system and dismissal, and professors changing their grading system and promotion) while the rest were strong relationships (ratings being used to dismiss professors and affect salary increases, ratings being used to dismiss professors and affect promotion, and ratings being used to affect promotion and salary increases).
Correlations Among Scale Variables: Importance and Effects

Table 24 provides correlation coefficients between the survey items from the Importance of Student Ratings Scale and the Effects of Student Ratings Scale. The results of the correlational analyses between the variables indicated that all correlations were positive, statistically significant, and greater than or equal to .15. All results were based on two-tailed tests, and all correlations were statistically significant at 0.01 level.

Table 24: Correlation Measures Among Scale Variables: Importance and Effects

<table>
<thead>
<tr>
<th>Importance of Student Ratings</th>
<th>Effects of Student Ratings</th>
<th>PCG</th>
<th>DIS</th>
<th>PRO</th>
<th>SAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey Statements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>.326*</td>
<td>.300*</td>
<td>.299*</td>
<td>.150*</td>
</tr>
<tr>
<td></td>
<td>(n=318)</td>
<td>(n=317)</td>
<td>(n=318)</td>
<td>(n=319)</td>
<td></td>
</tr>
<tr>
<td>Student evaluations are</td>
<td></td>
<td>.228*</td>
<td>.262*</td>
<td>.278*</td>
<td>.173*</td>
</tr>
<tr>
<td>important to the college</td>
<td></td>
<td>(n=319)</td>
<td>(n=318)</td>
<td>(n=319)</td>
<td>(n=320)</td>
</tr>
<tr>
<td>administrators. (ICA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>.250*</td>
<td>.209*</td>
<td>.264*</td>
<td>.186*</td>
</tr>
<tr>
<td></td>
<td>(n=318)</td>
<td>(n=317)</td>
<td>(n=318)</td>
<td>(n=319)</td>
<td></td>
</tr>
<tr>
<td>Student evaluations are</td>
<td></td>
<td>.403*</td>
<td>.203*</td>
<td>.274*</td>
<td>.211*</td>
</tr>
<tr>
<td>important to the instructor.</td>
<td></td>
<td>(n=319)</td>
<td>(n=318)</td>
<td>(n=319)</td>
<td>(n=320)</td>
</tr>
<tr>
<td>(II)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professors care about the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>opinions of their students.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(PC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professors use class</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>evaluations to improve their</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>teaching. (PU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Correlation was statistically significant at the 0.01 level (2-tailed).

(PCG) = Professors change their grading system based on feedback from the evaluations. (DIS) = Results from student evaluations are used to dismiss professors. (PRO) = Results from student evaluations are used to promote professors. (SAL) = Results from student evaluations influence salary increases.

Although the variable values demonstrated relationships, 15 of the 16 associations indicated medium to small correlations and were equal to or less than .32. The most distinct relationship was between professors using class evaluations to improve their
teaching (PU) and professors changing their grading system based on feedback from the evaluations (PCG); there was a moderate relationship, $r_s (317) = .403, p < .01$. Overall, the results suggested a low to moderate association between student perceptions about the importance of student ratings and the effects of student ratings.

Descriptive Analysis for Scales: Importance and Effects

In addition to the measures of association for each scale, descriptive statistics were used to analyze the responses to each of the eight survey statements which described the two dimensions. For example, Scale 2, perceived importance of student ratings, included survey statements 6, 7, 8, and 9, and Scale 3, perceived effects of student ratings included survey statements 11, 12, 13, and 14.

Descriptive Analysis of Survey Statements 6 – 9

The following tables provide the frequency, percentage, median, and mode for survey statements 6 – 9. Table 25 illustrates student responses to statement 6: student evaluations were important to the college administrators. Based on responses to survey statement 6, a majority of students (62.2%) agreed or strongly agreed that student evaluations were important to the college administrators. However, 13.1% of the respondents disagreed or strongly disagreed with this statement, while 24.4% of the students did not know. Overall, the majority of community college student respondents believed that college administrators valued student evaluations.
Table 25: Frequency Analysis for Survey Statement 6

<table>
<thead>
<tr>
<th>Perception</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Disagree</td>
<td>11</td>
<td>3.4%</td>
</tr>
<tr>
<td>Disagree</td>
<td>31</td>
<td>9.7%</td>
</tr>
<tr>
<td>Neither Agree nor Disagree</td>
<td>78</td>
<td>24.4%</td>
</tr>
<tr>
<td>Agree</td>
<td>122</td>
<td>38.1%</td>
</tr>
<tr>
<td>Strongly Agree</td>
<td>77</td>
<td>24.1%</td>
</tr>
<tr>
<td>Total</td>
<td>319</td>
<td>99.7%</td>
</tr>
</tbody>
</table>

Note. 1 student did not respond to this statement.

Table 26 illustrates student responses to survey statement 7 which indicated that 72.2% agreed or strongly agreed that student evaluations were important to the instructor. However, 10.3% of the students disagreed or strongly disagreed with this statement, while 17.5% of the respondents neither agreed nor disagreed. Overall, the large majority of students believed that instructors valued student ratings.

Over half of the students (63.1%) believed that professors cared about the opinions of their students (see Table 27). Although 25.6% of the students neither agreed nor disagreed with this statement, 11% of the respondents disagreed or strongly disagreed. Overall, the majority of community college student participants believed that teachers valued their opinions.
Table 26: Frequency Analysis for Survey Statement 7

Student evaluations are important to the instructor.

<table>
<thead>
<tr>
<th>Response</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Disagree</td>
<td>10</td>
<td>3.1%</td>
</tr>
<tr>
<td>Disagree</td>
<td>23</td>
<td>7.2%</td>
</tr>
<tr>
<td>Neither Agree nor Disagree</td>
<td>56</td>
<td>17.5%</td>
</tr>
<tr>
<td>Agree</td>
<td>145</td>
<td>45.3%</td>
</tr>
<tr>
<td>Strongly Agree</td>
<td>86</td>
<td>26.9%</td>
</tr>
<tr>
<td>Total</td>
<td>320</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Table 27: Frequency Analysis for Survey Statement 8

Professors care about the opinions of their students.

<table>
<thead>
<tr>
<th>Response</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Disagree</td>
<td>5</td>
<td>1.6%</td>
</tr>
<tr>
<td>Disagree</td>
<td>30</td>
<td>9.4%</td>
</tr>
<tr>
<td>Neither Agree nor Disagree</td>
<td>82</td>
<td>25.6%</td>
</tr>
<tr>
<td>Agree</td>
<td>146</td>
<td>45.6%</td>
</tr>
<tr>
<td>Strongly Agree</td>
<td>56</td>
<td>17.5%</td>
</tr>
<tr>
<td>Total</td>
<td>319</td>
<td>99.7%</td>
</tr>
</tbody>
</table>

Note. 1 student did not respond to this statement.
Nearly half of the students (45.9%) agreed or strongly agreed that professors used class evaluations to improve their teaching (see Table 28). Furthermore, 38.4% of the students neither agreed nor disagreed with this statement, while 15.7% of the respondents disagreed or strongly disagreed. Student responses reflected that less than a majority of the community college students believed student ratings were valued by professors as a resource to improve their teaching.

Table 28: Frequency Analysis for Survey Statement 9

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Disagree</td>
<td>6</td>
<td>1.9%</td>
</tr>
<tr>
<td>Disagree</td>
<td>44</td>
<td>13.8%</td>
</tr>
<tr>
<td>Neither Agree nor Disagree</td>
<td>123</td>
<td>38.4%</td>
</tr>
<tr>
<td>Agree</td>
<td>107</td>
<td>33.4%</td>
</tr>
<tr>
<td>Strongly Agree</td>
<td>40</td>
<td>12.5%</td>
</tr>
<tr>
<td>Total</td>
<td>320</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Median = 3. Mode = 3.

Students’ responses from the four statements were categorized according to perceived value to describe a composite variable, Perceived Value of the Importance of Student Ratings. Table 29 illustrates the scale median, frequency, and percentage measures on the perceived value of SRT importance to describe the 320 students’ general opinions. Student responses were grouped into three importance categories and assigned
a value (no value, uncertain value, value) which were based on the survey responses. Responses of 1 (strongly disagree) and 2 (disagree) were grouped into the first category: Importance 1 = no value. Responses of 3 (neither agree nor disagree) were grouped into the second category: Importance 2 = uncertain value. Responses of 4 (agree) and 5 (strongly agree) were grouped into the third category: Importance 3 = value. Results from data analysis indicated that Importance 1 was reported by 12.5% of the students; Importance 2 was reported by 26.5% of the students; and Importance 3 was reported by 61% of the students. Furthermore, the median score for this scale was 4, which suggested that many of the 320 respondents perceived the value of student ratings as important. Therefore, the majority of the sample group of community college students (61%) believed that student ratings held importance for administrators and faculty.

Table 29: Descriptive Analysis for Scale 2 – Perceived Value of SRT Importance

<table>
<thead>
<tr>
<th>Importance 1</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Value</td>
<td>160</td>
<td>12.5%</td>
</tr>
<tr>
<td>(Strongly Disagree to Disagree)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Importance 2</td>
<td>339</td>
<td>26.5%</td>
</tr>
<tr>
<td>Uncertain Value</td>
<td>(Neither Agree nor Disagree)</td>
<td></td>
</tr>
<tr>
<td>Importance 3</td>
<td>779</td>
<td>61.0%</td>
</tr>
<tr>
<td>Value</td>
<td></td>
<td>Scale Median = 4</td>
</tr>
<tr>
<td>(Strongly Agree to Agree)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Descriptive Analysis of Survey Statements 11 – 14

Finally, descriptive statistics were used to analyze the responses for each of the survey statements which described the last dimension (Scale 3), perceived effects of student ratings. These survey statements were 11, 12, 13, and 14.

Table 30 illustrates that few students (16%) agreed or strongly agreed that professors changed their grading system based on feedback from the student evaluations. Nearly one-half of the students (48.4%) neither agreed nor disagreed with this statement and just over one-third of the students (35.3%) disagreed or strongly disagreed. Overall, the large majority of students believed that results from student evaluations had an uncertain or no effect on professors’ adjustments to a course grading system.

Table 30: Frequency Analysis for Survey Statement 11

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Disagree</td>
<td>34</td>
<td>10.6%</td>
</tr>
<tr>
<td>Disagree</td>
<td>79</td>
<td>24.7%</td>
</tr>
<tr>
<td>Neither Agree nor Disagree</td>
<td>155</td>
<td>48.4%</td>
</tr>
<tr>
<td>Agree</td>
<td>36</td>
<td>11.3%</td>
</tr>
<tr>
<td>Strongly Agree</td>
<td>15</td>
<td>4.7%</td>
</tr>
<tr>
<td>Total</td>
<td>319</td>
<td>99.7%</td>
</tr>
</tbody>
</table>

Note. 1 student did not respond to this survey statement. Median = 3. Mode = 3.
Table 31 indicates that very few of the students (10.4%) agreed or strongly agreed that results from student evaluations were used to dismiss teachers. A majority (53.8%) of the respondents disagreed or strongly disagreed with this statement, while 35.3% of the students neither agreed nor disagreed. The overwhelming majority of students (89.1%) believed that results from student evaluations had an uncertain or no effect on dismissal status for faculty members.

Table 31: Frequency Analysis for Survey Statement 12

<table>
<thead>
<tr>
<th>Results from student evaluations are used to dismiss professors.</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Disagree</td>
<td>61</td>
<td>19.1%</td>
</tr>
<tr>
<td>Disagree</td>
<td>111</td>
<td>34.7%</td>
</tr>
<tr>
<td>Neither Agree nor Disagree</td>
<td>113</td>
<td>35.3%</td>
</tr>
<tr>
<td>Agree</td>
<td>21</td>
<td>6.6%</td>
</tr>
<tr>
<td>Strongly Agree</td>
<td>12</td>
<td>3.8%</td>
</tr>
<tr>
<td>Total</td>
<td>318</td>
<td>99.4%</td>
</tr>
</tbody>
</table>

Note. 2 students did not respond to this survey statement.

Some of the students (22.2%) agreed or strongly agreed that results from student evaluations were used to promote teachers (see Table 32). However, one-third of the students (33.4%) disagreed or strongly disagreed with this statement. Furthermore, 44.1% of the respondents neither agreed nor disagreed. Overall, the overwhelming majority of
students (77.5%) believed that results from student evaluations had an uncertain or no effect on promotion status for teachers.

Table 32: Frequency Analysis for Survey Statement 13

<table>
<thead>
<tr>
<th>Results from student evaluations are used to promote professors.</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Disagree</td>
<td>35</td>
<td>10.9%</td>
</tr>
<tr>
<td>Disagree</td>
<td>72</td>
<td>22.5%</td>
</tr>
<tr>
<td>Neither Agree nor Disagree</td>
<td>141</td>
<td>44.1%</td>
</tr>
<tr>
<td>Agree</td>
<td>52</td>
<td>16.3%</td>
</tr>
<tr>
<td>Strongly Agree</td>
<td>19</td>
<td>5.9%</td>
</tr>
<tr>
<td>Total</td>
<td>319</td>
<td>99.7%</td>
</tr>
</tbody>
</table>

Note. 1 student did not respond to this survey statement.
Median = 3. Mode = 3.

A few students (15%) agreed or strongly agreed that results from student evaluations affected faculty salary increases (see Table 33). On the contrary, 40.6% of the students disagreed or strongly disagreed that student ratings influenced increases in salary. Nearly half of the students (44.4%) neither agreed nor disagreed with this statement. Overall, the overwhelming majority of students (85%) believed that results from student evaluations had an uncertain or no effect on salary increases for teachers.
Table 33: Frequency Analysis for Survey Statement 14

Results from student evaluations influence faculty salary increases.

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Disagree</td>
<td>43</td>
<td>13.4%</td>
</tr>
<tr>
<td>Disagree</td>
<td>87</td>
<td>27.2%</td>
</tr>
<tr>
<td>Neither Agree nor Disagree</td>
<td>142</td>
<td>44.4%</td>
</tr>
<tr>
<td>Agree</td>
<td>35</td>
<td>10.9%</td>
</tr>
<tr>
<td>Strongly Agree</td>
<td>13</td>
<td>4.1%</td>
</tr>
<tr>
<td>Total</td>
<td>320</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Median = 3. Mode = 3.

Students’ responses from the four statements were categorized according to perceived value to describe a composite variable, Perceived Value of the Effects of Student Ratings. Table 34 illustrates the scale median, frequency, and percentage measures on the perceived value of SRT effects to describe the 320 students’ general opinions. Student responses were grouped into three effects categories and assigned a value (no value, uncertain value, value) which were based on the survey responses. Responses of 1 (strongly disagree) and 2 (disagree) were grouped into the first category: Effect 1 = no value. Responses of 3 (neither agree nor disagree) were grouped into the second category: Effect 2 = uncertain value. Responses of 4 (agree) and 5 (strongly agree) were grouped into the third category: Effect 3 = value. Results from data analysis indicated that Effect 1 was reported by 40.9% of the students; Effect 2 was reported by 43.2% of the students; and Effect 3 was reported by 15.9% of the students. Furthermore,
the median score for this scale was 3, which suggested that for many of the 320 student respondents the effects of student ratings had an uncertain value. Therefore, the majority of the sample group of community college students (84.1%) believed that student ratings had an uncertain or no effect on a teacher’s grading system, dismissal or promotion status, or salary increases.

Table 34: Descriptive Analysis for Scale 3 – Perceived Value of SRT Effects

<table>
<thead>
<tr>
<th>Effect 1</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Value (Strongly Disagree to Disagree)</td>
<td>522</td>
<td>40.9%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effect 2</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncertain Value (Neither Agree nor Disagree)</td>
<td>551</td>
<td>43.2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effect 3</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value (Strongly Agree to Agree)</td>
<td>203</td>
<td>15.9%</td>
</tr>
</tbody>
</table>

Scale Median = 3

Only one of the 320 students, who had completed the survey, responded with a score of 3, neither agreed nor disagreed, to each survey statement. This same respondent did not respond to any of the demographic questions. Furthermore, 320 students responded to 99.8% of the survey statements for a response total of 4791 responses from a possible number of 4800 responses. Therefore, the researcher believes that 99.7% of the students read the statements and provided trustworthy opinions.
Qualitative Analysis of Student Comments

Students were provided the opportunity to include a written comment on the survey form. It was noteworthy that 124 students, which represented 39% of the 320 respondents, entered comments. The majority of respondents were female (70%). Each response was evaluated and coded into one of the three dimensions: Beliefs about Student Ratings = 1, Importance of Student Ratings = 2, and Effects of Student Ratings = 3. Comments not related to one of these scales were included in a separate category and coded: General Comments = 4. Such general comments (17%, n = 21) might have referred to a particular instructor or college and were not directly related to the student ratings practice. One example of a student comment which was coded into the General Comments category was given by a respondent who stated, “I believe that some instructors are very easy going and others are not. Some of them help the students with difficulties and some don’t. Most of my teachers were great.” Also, several comments in the General Comments category were from students who thanked the researcher for inviting them to participate in the study and expressed their appreciation for being asked their opinions.

Once the scale category was determined for each comment, the comments which related to beliefs, importance, or effects received a second code. This code reflected the student’s perceived value of student ratings as follows: no value = 1, uncertain value = 2, and value = 3. Table 35 illustrates the frequency and percentage for each of the comments according to 1 of the 4 categories: beliefs, importance, effects, and general. The table also provides a summary of the comments according to value: no value, uncertain value, and value.
Table 35: Descriptive Analysis for Student Comments

<table>
<thead>
<tr>
<th>Beliefs About Student Ratings Scale</th>
<th>n</th>
<th>% of Total Responses</th>
<th>% of Scale Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Value</td>
<td>21</td>
<td>32%</td>
<td>53%</td>
</tr>
<tr>
<td>Uncertain Value</td>
<td>19</td>
<td>29%</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>26</td>
<td>39%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Importance of Student Ratings Scale</th>
<th>n</th>
<th>% of Total Responses</th>
<th>% of Scale Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Value</td>
<td>7</td>
<td>32%</td>
<td>18%</td>
</tr>
<tr>
<td>Uncertain Value</td>
<td>8</td>
<td>36%</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>7</td>
<td>32%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effects of Student Ratings Scale</th>
<th>n</th>
<th>% of Total Responses</th>
<th>% of Scale Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Value</td>
<td>3</td>
<td>20%</td>
<td>12%</td>
</tr>
<tr>
<td>Uncertain Value</td>
<td>11</td>
<td>73%</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>1</td>
<td>7%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General Comments</th>
<th>n</th>
<th>% of Total Responses</th>
<th>% of Total Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>21</td>
<td>17%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Perceived Value of Comments from All 3 Scales</th>
<th>n</th>
<th>% of Total Responses</th>
<th>% of Total Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Value</td>
<td>31</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>Uncertain Value</td>
<td>38</td>
<td>31%</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>34</td>
<td>27%</td>
<td></td>
</tr>
<tr>
<td>General Comments</td>
<td>21</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>(unassigned value)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>124</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gender</th>
<th>n</th>
<th>% of Total Responses</th>
<th>% of Total Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>male</td>
<td>37</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>female</td>
<td>87</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>124</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Note. 39% (n = 124) of the 320 student respondents wrote comments.
In category 1, perceived beliefs about student ratings, the most frequent comments reflected the belief that student ratings had value (39%, \(n=26\)). However, 32% (\(n=21\)) of the students who expressed an opinion in this category disagreed that student ratings had value. One example of a student comment which was coded into the Beliefs about Student Ratings category was given by a student who wrote, “Most students usually fill out the form in 30 seconds and just pick a line and fill. Not very effective.” This comment was coded 1, 1. The first number represented category 1, Beliefs about Student Ratings, and the second number represented perceived value. This participant’s response indicated that the student believed ratings had no perceived value.

Seven students (32%) commented on the perceived importance of student ratings by indicating that ratings were important to the instructors and administrators. A student commented, “I believe that professors should know how students assess them and they should be able to look at their teaching methods and improve upon them.” This was coded 2, 3. For this student, student ratings were important and had value. However, 36% (\(n=8\)) of the students who made a comment regarding the importance of student ratings for instructors or administrators were uncertain if student evaluations had value.

Eleven students (73%) who commented on the effects of student ratings were uncertain about how the results from student ratings were used. Most of the students in this category expressed an interest in knowing how the student evaluations were used. For example, one student stated, “I am not sure as to how the information obtained from evaluations are used. This is why most of my answers are 3s. I would like to know more on how they are used. Also, I feel evaluations should be administered later in the semester. Students might be more serious about filling them out if they know how the
information was used and the impact it would have.” This was coded 3, 2. The student is uncertain of the effects of student ratings. Overall, the most frequent written comment (31%) from the total of the 3 scales indicated that students perceived students ratings as having an uncertain value ($n = 38$).

Research Question 3

What were the Florida community college faculty member respondents’ perceptions of the student evaluation process and its impact on instruction? In this study, process and practice were terms used to denote the customary action or series of actions leading to the use of student rating forms to evaluate teaching effectiveness. The data from the faculty responses to the survey (Appendix G) and to the interview questions (Appendix E) were used to address Research Question 3. First, inferential statistics were used to test the null hypothesis that there was no statistically significant mean difference on the total Grading Faculty survey responses between student and faculty. Next, the qualitative methods and procedures outlined by Moustakas (1994) were used to organize and analyze the transcribed interviews and to develop a composite statement highlighting the essence of student ratings for the faculty group. According to Moustakas, “In accordance with phenomenological principles, scientific investigation is valid when the knowledge sought is arrived at through descriptions that make possible an understanding of the meanings and essences of experience” (p. 84). By choosing to do qualitative research, the researcher wanted to examine the individual experiences with the SRT practice for community college colleagues. Through personal contact and small group discussions with 21 faculty members from 5 Florida community colleges, the researcher
used the word data, which were collected during the interview sessions, to describe the value of the SRT practice for this group as a complement to traditional, quantitative methods of research that were also used in this study. Before the qualitative analysis is discussed, the result of the inferential analysis is presented.

Independent-Samples t Test

An independent-samples *t* test was conducted to test the null hypothesis that there was no statistically significant mean difference on the total Grading Faculty survey responses between student and faculty. The hypothesis tested that the student group and the faculty group were similar in their overall perceptions regarding the student evaluation practice. Levene’s test indicated that the assumption of homogeneity was not violated (*F* (339, 21.799) = .965, *p* = .327). The independent-samples *t* test was not statistically significant, *t*(339) = .924, *p* = .356.

Table 36: Comparison of Total Mean Survey Responses

<table>
<thead>
<tr>
<th>Respondents</th>
<th>n</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Group</td>
<td>320</td>
<td>3.5</td>
<td>.51</td>
</tr>
<tr>
<td>Faculty Group</td>
<td>21</td>
<td>3.4</td>
<td>.62</td>
</tr>
</tbody>
</table>

Table 36 illustrates that the average mean response for the 15 survey items for the student group (*M* = 3.5, *SD* = .51) was slightly more positive than the average mean
response for the faculty group ($M = 3.4, SD = .62$). The 95% confidence interval for the difference in means ranged from -.120 to .334. The null hypothesis was not rejected. The effect size ($d = .21$) indicated a small difference between the means of the two groups.

Qualitative Analysis

The Moustakas method which was used to organize and analyze the faculty transcripts was his modification of the phenomenological data analysis methods suggested by Stevick-Colaizzi-Keen (Moustakas, 1994). The Moustakas’ approach analyzes the verbatim descriptions for each respondent. One adjustment to the Moustakas’ method was made. Since this study involved small focus groups of faculty members, the analysis of each transcript reflected not one individual’s experience but each separate college group’s experience with student ratings. In order to construct the composite or essence statement, each interview experience was analyzed through a series of processes: Epoche, Phenomenological Reduction, Imaginative Variation, and Synthesis (Moustakas). The essence statement represented the combined descriptions of the participants’ experiences with student evaluations. This statement reflected a summary of the descriptive analysis regarding the faculty participants’ perceptions of student evaluations and how the results from student evaluations impact instruction.

The initial process of phenomenological analysis required the researcher to dismiss personal experiences with student evaluations in order for the interviews and data interpretation to be understood through the experiences of the participants. The researcher had personal experiences with SRTs as both a faculty member, who had been evaluated by students for more than 10 years, and as a department chairperson, who used results...
from SRTs when evaluating full time and adjunct faculty teaching effectiveness within the department. Therefore, through the first process or Epoche phase, the researcher was required to set “aside predilections, prejudices, predispositions, and allowing things, events, and people to enter anew into consciousness, and to look and see them again, as if for the first time” (Moustakas, 1994, p. 85). This was a conscious activity that the researcher engaged in during the interviews and the analysis phases.

To complete the second process of phenomenological reduction, the researcher engaged in a series of four steps: bracketing, horizontalizing, clustering, and organizing. In developing the interview questions (Appendix E), the researcher focused or bracketed each question on the phenomenon of student evaluations. During the interviews, the researcher noted that the respondents would occasionally digress from the topic of student ratings to discuss related academic topics. Although each statement was initially considered as having equal value, each statement that was not related to the topic was deleted as part of the data reduction phase through a process Moustakas described as horizontalizing. Therefore, only relevant and non-repetitive statements which pertained to Research Questions 3 were listed and became the raw data for analysis. These statements are the “invariant horizons or meaning units of the experience” (Moustakas, 1994, p. 122). Next, these invariant meaning units were clustered into core themes. From these core themes, a textural description of the student ratings experience was constructed for the faculty group; this is a description of what happened.

The third process included using a technique Moustakas (1994) described as imaginative variation. This action involved examining the data for all possible meanings, searching for varied opinions, and adjusting the point of view in order to develop a
structural description for the faculty group; this is a description of how the phenomenon was experience. Finally, a composite textural-structural description of the student ratings experience was presented. This represented the synthesis of meanings and essences (the value of student ratings) for the faculty group.

Phenomenological Analysis of Faculty Transcriptions

The researcher selected the mixed methodology to provide both the quantitative data typically collected in research and the qualitative data gathered through a naturalistic, personal contact with each participant. According to Moustakas (1994), “The method of reflection that occurs throughout the phenomenological approach provides a logical, systematic, and coherent resource for carrying out the analysis and synthesis needed to arrive at essential descriptions of experience” (p. 47). In designing this study, the researcher sought to understand the personal perspectives and experiences that community college colleagues had with the student ratings practice. The researcher felt this could be best achieved through personal interview sessions. The philosophical perspective of the phenomenological approach provided a unique way for investigation.

In phenomenological studies the investigator abstains from making suppositions, focuses on a specific topic freshly and naively, constructs a question or problem to guide the study, and derives findings that will provide the basis for further research and reflection. In phenomenological science a relationship always exists between the external perceptions of natural objects and internal perceptions, memories, and judgments. (Moustakas, 1994, p. 47)

Each faculty interview session was conducted at the 5 respective community colleges between November 2004 and February 2005. Each interview session was audio taped and lasted approximately 90 minutes. A total of 21 faculty (female = 13, male = 8)
participated in the different sessions (see Table 6 for the faculty demographic profile). Faculty members were primarily full time, tenured, associate professors who taught in the associate of arts general education program \((n = 8)\) or the associate of science/associate of applied science programs \((n = 6)\). The average number of years of higher education teaching was 16 years.

Phenomenological Reduction

In the analysis phase of phenomenological data reduction, every significant statement was given equal value. Moustakas (1994) described this process as horizontalization. As applied here, the researcher considered every statement related to student evaluations as important. Next, statements not related to the student evaluation topic and repetitive statements were deleted as part of the data reduction phase. Through this action, only the horizons or invariant constituents remained (Moustakas). Table 37 illustrates the verbatim examples extracted from the faculty transcriptions that reflected the respondents’ perceptions of the teacher evaluation practice and its impact on instruction. This sample of significant statements from the extensive transcripts revealed some of the invariant horizons or meaning units of the SRT experience for the community college faculty participants.
Faculty Members’ Perceptions of the Student Evaluation Practice

1. I just don’t like them. Some of it can be tantamount to hate mail.

2. I don’t think that in terms of really being an instrument to improve teaching effectiveness that student evaluations are effective.

3. There are people who are afraid of these things. I do not think anybody likes to get bad ones even if it is just one bad one.

4. There has to be something that provides some kind of uniform feedback channel.

5. This doesn’t do anything except take up class time. I think there are other methods.

6. It’s as useful as the individual faculty makes it.

7. I find that sometimes the comments address issues that are beyond the faculty members control such as there is too much material in this course.

8. I think the process should be automated; it should be online.

9. It is easy to administer; that’s about it.

10. I think the process we do is very easy, efficient, and could potentially offer us a lot of value, potentially.

11. The numbers I don’t do anything with; they’re kind of a joke.

12. I have been here six years. I have never sat down with anybody and discussed them.

13. If I am not looking at it and they are not telling me about it, might as well throw them away or sure not spend the time doing it. I would love to be complimented. I want an outside observer saying that, positive and negative.

14. It needs to be more specific. It goes back to the students being able to freely comment. I need more specific feedback.

15. I have evaluations that were completed last February for two classes that I taught as an adjunct, and I still have not seen those evaluations. It has been a full year.
16. Ours is so useless right now; we might as well stop doing it. But I guess that we have to do it because there is some rule somewhere that you have to allow students to evaluate.

17. The teacher has the ability to be able to control the amount of negative comments depending on the timing when they decide to do these. The later in the semester the chances of a good evaluation tend to decrease, I think.

18. Really, it should come from the students. They’re the ones who should probably be telling us what kind of questions they would like to see to respond to. We are asking them what we are looking for. They’re the ones whose feedback we are soliciting.

19. It is an indicator of how poor our instrument is right now that so many faculty are just inventing their own for getting that kind of valuable feedback.

Phenomenological analysis continued through further data reduction with the numerous meaning units (invariant horizons) being clustered or classified into themes. These common core themes emerged from the faculty members’ descriptions of their experiences with the SRT practice (see Table 38). For purposes of validation, these clusters were reviewed for consistency with the original transcriptions. It is important to note that although the themes were common across the five faculty groups, the degree of importance varied. Brief verbatim examples of participants’ thoughts and feelings accompany each of the core themes as follows:
<table>
<thead>
<tr>
<th>Theme</th>
<th>Verbatim Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SRT Purpose</td>
<td></td>
</tr>
<tr>
<td>Ambiguous</td>
<td>I think that we need to develop a list or some ideological stance of this is what we think they are good for, this is what we are going to use them for, and this is how you will be affective from its use. A lot of us do it because we are told to. Some of us look at it in depth; others might not look at it at all because we don’t know what it means in terms of the bigger scheme of things.</td>
</tr>
<tr>
<td>2. Faculty Attitudes</td>
<td></td>
</tr>
<tr>
<td>Trust</td>
<td>I take it seriously; I am very interested in what they’ve got to say.</td>
</tr>
<tr>
<td>Mistrust</td>
<td>People are afraid that is something that could be used against them.</td>
</tr>
<tr>
<td>3. Instrument</td>
<td></td>
</tr>
<tr>
<td>Inadequate</td>
<td>They are very limited in the number of questions, the way they are worded, and the kind of thing you can conclude from that.</td>
</tr>
<tr>
<td>4. Feedback</td>
<td></td>
</tr>
<tr>
<td>Students</td>
<td>Students don’t take the time to give you that detailed feedback.</td>
</tr>
<tr>
<td>Supervisors</td>
<td>I want compliment, but I want critique too and develop how we are going to use this stuff in a concrete way and inform faculty.</td>
</tr>
<tr>
<td>5. Impact on Instruction</td>
<td></td>
</tr>
<tr>
<td>Changes</td>
<td>I have told them please take your time with some of these because I will use the data I get from you to alter next semester. I take my worst ones, and I attempt to change. I don’t ignore this stuff. I make sure they know I don’t ignore it.</td>
</tr>
<tr>
<td>No changes</td>
<td>They probably don’t impact instruction a lot. I would guess not.</td>
</tr>
<tr>
<td>6. SRT Procedural Issues</td>
<td></td>
</tr>
<tr>
<td>Timing of SRT administration</td>
<td>It is an incomplete feedback without those students who withdraw. So the timing of it, I think, is a little late in the semester.</td>
</tr>
</tbody>
</table>
The worst part is the turn-around time.

7. SRT Evaluation Alternatives

<table>
<thead>
<tr>
<th>Instructor developed</th>
<th>I think the ones the instructors take time out to give their own probably do affect a great deal, or they wouldn’t bother doing it.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online</td>
<td>Student have taken this matter into their own hands (rate your professor web site), and people have that printed out on me. That is their reference now; they have democratized the process.</td>
</tr>
<tr>
<td>Paradigm shift</td>
<td>Make the students accountable; they have to be engaged in their learning.</td>
</tr>
</tbody>
</table>

The final process in data reduction was developing a textural description. The following textural description (see Table 39) represented the experience of student evaluation of teaching for one faculty group. Relevant meaning units were linked thematically and synthesized to provide a description of the student evaluation practice and its impact on instruction for one group of community college faculty participants. The perceived value of student evaluation of teaching for this group was similar in essence to those of their colleagues at the other four community colleges. The individual textural description completed the data reduction process of the interview data for this community college. Data reflect verbatim descriptions from the three faculty participants. In describing the factors that contributed to Group B’s experience with student evaluation, the researcher recognized that the participants were volunteers who validated their interest in the student evaluation process through their participation in the interview.
Table 39: Individual Textural Description for Community College B Faculty

A Description of Student Evaluations for One Group

For students, I think, it provides them a voice. It allows them a chance. I have had students say to me, I can’t wait for those evaluations. And they have said that both ways: the student that really gets along with me and the student that doesn’t get along with me. So I think it gives them a voice. I think the process is more important than the product. I find myself always reading my scores thinking about my students: who they are and where the issues came up; what was the reason the student said this. So I go back one step too far instead of just looking at the numbers. I look for low ratings. If it is an issue that I think I can correct, I have actually changed some things like my syllabus. I have told them please take your time with some of these because I will use the data I get from you to alter next semester. I take my worst ones and I attempt to change. I take a look at what the students say. Our department chair gets it for sure and looks at it, I assume. I have been here six years. I have never sat down with anybody and discussed them. I would love to be complimented. I want an outside observer saying that …positive and negative. They don’t have a clue of why we do this besides some formality that is required. A lot of us do it because we are told to. Some of us look at it in depth; others might not look at it at all because we don’t know what it means in terms of the bigger scheme of things. I have found in the past that written information is much more effective for me than just the number information. I think that when I was a beginning teacher such evaluation process was much more significant than it is now for me. I especially use their written comments because this doesn’t always give me the insight that I need to change. We get this data about five days prior to when our self-evaluation is due so that is too quick of a turn-around time for anything more than a paragraph in a self-evaluation. Consequently, it doesn’t get the attention that it might in a self-evaluation. This comes six weeks into the following semester. I have already got my syllabus underway. I am into doing the same mistakes again. I don’t have time to get the immediate feedback that this is working or change this. I would like to turn in my grades and pick up my evaluations; that’s when I start thinking about the next semester. We need to get more feedback from supervisors and more feedback from students.

Note. Source Community College B Transcripts

Imaginative Variation: How Evaluations Were Experienced

Analysis continued with the imaginative variation process (Moustakas, 1994). In this analysis phase, the researcher constructed an individual structural description of the meaning of student evaluations using the previous example. According to Moustakas,
The task of Imaginative Variation is to seek possible meanings through the utilization of imagination, varying the frames of reference, employing polarities and reversals, and approaching the phenomenon from divergent perspectives, different positions, roles, or functions. The aim is to arrive at structural descriptions of an experience, the underlying and precipitating factors that account for what is being experienced; in other words, the “how” that speaks to conditions that illuminate the “what” of experience. How did the experience of the phenomenon come to be what it is? (p. 97-98)

An analysis of the preceding textural description highlighted the structures that described this group’s perceptions of the institutionally prescribed student evaluation practice.

Using exact quotations from faculty transcripts as supporting data, Table 40 illustrates the structural description of how the student evaluation practice was experienced by faculty at Community College B.

Table 40: Individual Structural Description for Community College B Faculty

<table>
<thead>
<tr>
<th>How Student Evaluations Were Experienced by One Group: A Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The participants’ expressed genuine interest in students’ opinions (“it provides them a voice”; “thinking about my students: who they are and where the issues came up”). The faculty members paid attention and showed appreciation for the student feedback (“I look for low ratings”; “I have told them please take your time …because I will use the data”). The group discussed the dynamic interrelationship between the teaching and learning process (“I take my worst ones, and I attempt to change”). Faculty members spoke about their frustration with immediate supervisors who had demonstrated a lack of interest in reviewing the student evaluations (“I have never sat down with anybody and discussed them”). Participants expressed their desire to have supervisory feedback (“I would love to be complimented. I want an outside observer saying that …positive and negative”). They shared their feelings of disillusionment with administrators (“They don’t have a clue of why we do this besides some formality”) and with the delay of receiving the results (“We get this data about five days prior to when our self-evaluation is due”; “This comes six weeks into the following semester”). Faculty members wanted a clearer institutional rationale for requiring student evaluations (“A lot of us do it because we are told to”; “we don’t know what it means in terms of the bigger scheme of things”). Group members shared their desire for increased reactions (“We need to get more feedback from supervisors and more feedback from students”).</td>
</tr>
</tbody>
</table>
Table 41 illustrates the composite textural description constructed from analysis of the invariant meanings and core themes (see Table 38) to characterize the SRT experience for the faculty group as a whole.

Table 41: Composite Textural Description for the Five Faculty Groups

A Description of Student Evaluations

The experience with the student evaluation practice was a feeling of obligation to comply with a directive. For many participants, they accepted the fact that the institution had decided student evaluations were to be done at a particular time in the academic calendar. During the discussions, faculty participants used an informal verbal ranking continuum to elucidate their perceptions of the institutionalized SRT practice. Participants described their experience with the purpose of the SRT from being unsure of the survey’s intention to expressing concern about how the results were used. Faculty attitudes ranged from valuing the data to doubting its worth, from trusting the seriousness of the students when they completed the ratings forms to considering students’ sincerity a joke, and from believing results were for self-reflection to feeling apprehensive on how data could be used by administrators. Although the instrument is intended to provide meaningful feedback, faculty questioned the adequacy of the statements to which students responded, and many participants felt the assessment tool was inadequate. In desiring feedback on teaching effectiveness, participants appreciated the students’ comments but decried the reality that students generally did not take the time to offer written suggestions. As equally frustrating for some was the lack of response from supervisors. The relationship between results from student evaluations and the affect on instruction varied. Some participants made changes to instructional materials, voice intensity or speech rate, or methods of interacting with their students. Others had made very few if any adjustments to instruction primarily because of the limited student feedback. Disillusionment was expressed regarding institutional procedures particularly with the timing of the SRT administration and delivery of the results. Many of the participants had adopted their own methods of collecting feedback from the students including asking students to give brief written or oral critiques. Others posted questions for students to comment on via web-based class management programs such as Blackboard. Most members expressed great satisfaction with instructor-developed methods. Faculty participants commented on the growing interest among students to evaluate faculty through commercial online resources; some felt their institutions should move toward this environment. Finally, participants from two of the colleges indicated that their institutions were advancing significant changes in student assessment philosophy and survey instrument design. The evaluation of the teaching process at those colleges was being redefined to include the critical role of the student in the teaching and learning process.
Through the same analysis process of imaginative variation (Moustakas, 1994) that was used to construct the individual structural description, a composite structural description which represented how student evaluations were experienced by the total faculty group was developed (see Table 42). Exact quotations from faculty participants were used as supporting data.

Table 42: Composite Structural Description for the Five Faculty Groups

<table>
<thead>
<tr>
<th>How Student Evaluations Were Experienced: A Description</th>
</tr>
</thead>
</table>
| In accepting an ambiguously defined system of student evaluation, many of the faculty participants attempted to make the most of the experience yet felt the SRT system needed both clarification and improvement. (“It’s like a feel good measure”; “They’re merely supposed to check off the fact that you did, in fact, deliver it, and that it was in fact done”; “I personally would like to make it fit more into my program rather than a universal one.”) However, there was the recognition that the structure provided the students the opportunity to have input. (“We don’t always know; we think we know what the students feel, think, and how they’re doing, so there has to be an evaluation tool.”) Although some faculty believed some students took the process seriously, the majority felt the instrument interfered with quality feedback. (“The numbers I don’t do anything with”; “The written part is what I have some value in: the students’ actual comments”; “I feel like the numbers are not a real indicator of what is going on.”) The majority questioned the supervisor’s role in the process. (“It’s almost like you’re a pain if you ask about them”; “They sit on somebody’s desk for a long time.”) Several indicated that some students’ comments had a slight impact on their instructional style or teaching resource such as syllabus. However, a few indicated that many helpful suggestions actually come unsolicited throughout the semester. (“I’ve gotten more from verbal comments—students after class.”) The most significant factor in defining the faculty experience with the student evaluation practice was the expression of frustration with the delivery of the results. (“No information provided on a regular basis; therefore, no impact on teaching effectiveness”; “It was months, and by the time I get it back, I can’t remember.”)
The last process in phenomenological analysis “is the intuitive integration of the fundamental textural and structural descriptions into a unified statement of the essence of the experience of the phenomenon as a whole” (Moustakas, 1994, p. 100). Table 43 presents a single unifying description of the experience of student evaluations for the 21 faculty participants. This statement, which includes verbatim quotations from faculty transcripts, is a descriptive summary regarding the participants’ perceptions of student evaluations and how the results from student evaluations impact instruction.

Table 43: Textural-Structural Synthesis: Faculty Perceptions of Student Evaluations

<table>
<thead>
<tr>
<th>The Value of Student Ratings and Its Impact on Instruction: A Descriptive Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data from student evaluation of instruction can only be as meaningful as the system from which it functions. Ambiguous protocols, inadequate instruments, feelings of faculty trust juxtaposed with feelings of faculty distrust, and limited or non-existent feedback cast doubt on garnering significant data, and, thus student evaluation results have limited value to promote teaching effectiveness. A common belief among the community college faculty participants can be summarized with the following: “If you took all of the evaluations on campus, the average would probably be agree.” A unanimous sense of frustration surfaced with the “lousy instrument” and “wrong questions.” Many teachers devised their own methods for finding out “what works in the classroom and what doesn’t.” Most teachers felt “written information is much more effective than just the number information.” Faculty voiced awareness that students sought alternative methods such as online networks for sharing information about professors. Consequently, a significant relationship between the results from the student evaluations being used as a method to impact instruction was not demonstrated through the currently adopted student evaluation practices among the five participating community colleges.</td>
</tr>
</tbody>
</table>

The Moustakas (1994) techniques for phenomenological research were used to analyze the extensive data provided by the 21 faculty participants. To summarize the
descriptions of their experiences with student ratings, the following perceptions regarding
the student evaluation practice were noted: (a) Most of the faculty participants’ did not
believe that there was a significant relationship between the institutionally adopted
formal practice of student evaluation and the numeric data typically collected from
student evaluations as being a valuable source to influence instruction; (b) Most faculty
participants expressed their general frustration with inadequately designed instruments,
ineffective methods of receiving ratings results, and limited or non-existent feedback
from supervisors; and (c) Many of these teachers had designed their own methods for
receiving feedback from their students. They placed greater value on this information.

Research Question 4

What were the Florida community college administrators’ perceptions of the
student evaluation process and its impact on instruction and faculty evaluation? The
phenomenological data analysis approach advanced by Moustakas (1994) was used to
organize and analyze the data collected from the questionnaire (Appendix D) which was
used during the administrator interview sessions. One adjustment to the Moustakas’
method was made. The Moustakas’ approach analyzes the verbatim descriptions from
each respondent. Since this study involved small focus groups of administrators, the
analysis of each transcript reflected not one individual’s experience but each separate
college group’s experience with student ratings. In order to construct the composite or
essence statement, each interview experience was analyzed through a series of processes:
Epoch, Phenomenological Reduction, Imaginative Variation, and Synthesis (Moustakas,
1994). These data analysis processes were outlined in the previous section which presented the sequence for phenomenological investigation of Research Question 3.

Qualitative Analysis

Each administrator interview session was conducted at the 5 respective community colleges between November 2004 and February 2005. Each interview session was audio taped and lasted approximately 90 minutes. A total of 17 administrators (female = 9, male = 8) participated in the different sessions (see Table 7 for administrator demographic profile). More deans or assistant deans (41.2%, \(n = 7 \)) participated in the interview sessions. Academic vice presidents from three of the five community colleges joined in one of the five interview sessions. All sessions were conducted on the same day as the faculty interview sessions, whereas the survey administration to the student groups occurred over a period of one or more days.

Phenomenological Reduction

In the analysis phase of phenomenological data reduction, every significant statement was given equal value. Moustakas (1994) described this process as horizontalization. As applied here, the researcher considered every statement related to student evaluations as important. Next, statements not related to the student evaluation topic and repetitive statements were deleted. Through this action, only the horizons or invariant constituents remained (Moustakas). The following statements (see Table 44) are verbatim examples extracted from the administrator transcriptions that reflected the respondents’ perceptions of the student evaluation practice and its impact on instruction.
and faculty evaluation. This sample of significant statements from the extensive transcripts revealed some of the invariant horizons or meaning units of the student evaluation experience for the 17 community college administrator participants.

Table 44: Invariant Horizons Extracted from the Administrator Groups’ Transcripts

<table>
<thead>
<tr>
<th>Administrators’ Perceptions of the Student Evaluation Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Their (students) opinion is being sought. It should not be sought by either carrot or stick. It should be truthful, freely given opinion.</td>
</tr>
<tr>
<td>2. I always look at the results relative to others who are teaching the same course. Then use that information to promote development within that group of faculty.</td>
</tr>
<tr>
<td>3. It is an enormous amount of work for the staff to compare, to distribute, and to re-gather. There should be an easier way, less time-consuming way of doing that.</td>
</tr>
<tr>
<td>4. The only time that I see them in my position is if there is a problem.</td>
</tr>
<tr>
<td>5. I do not believe anyone has ever been denied tenure or promotion solely on the student evaluation.</td>
</tr>
<tr>
<td>6. That they exist is the most important thing for the administration at this point.</td>
</tr>
<tr>
<td>7. Students would be invested more in the process and the outcomes if the results were available for their review.</td>
</tr>
<tr>
<td>8. We have never used it in a punitive sense. If you had a faculty member say that you know that students keep complaining they weren’t doing their job, then we might look at that.</td>
</tr>
<tr>
<td>9. They are not to be used for evaluation but for self-reflection. And that is fine, but I think the negative part of that is that they have become meaningless in terms of the process.</td>
</tr>
<tr>
<td>10. One of our big goals is to always be accountable for what we do. The student tool is one of those.</td>
</tr>
<tr>
<td>11. The information is not precise enough. I would like a more precise questionnaire.</td>
</tr>
</tbody>
</table>
12. Students put very little stock in them which is one reason why you see students go straight down a column.

13. For new people who are just getting started teaching who do not have a lot of experience, they (SRTs) are very helpful if they have a department chair who looks at them and helps mentor and gives them guidance in what they are doing.

14. I do not think at any level there has been any type of training in interpreting the data.

15. If you look at the questions, these are almost the baseline that the faculty member should do.

16. I think we need to review the instrument, review the process, and review how the information is conveyed to faculty, and how it is interpreted and what it means. It should be reviewed every couple of years.

17. I do think in the delivering process when the instructor takes time to talk to the students about the seriousness of the evaluation and the importance of filling in where you can write in your own thoughts then I think the evaluative process works better.

Phenomenological analysis continued through further data reduction with the numerous meaning units (invariant horizons) being clustered or classified into themes. These common core themes emerged from the administrators’ descriptions of their experiences with the SRT practice (see Table 45). For purposes of validation, these clusters were reviewed for consistency with the original transcriptions. It is important to note that although the themes were common across the five administrator groups, the degree of importance varied. Brief verbatim examples of participants’ thoughts and feelings accompany each of the core themes as follows:
<table>
<thead>
<tr>
<th>Theme</th>
<th>Verbatim Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SRT Purpose</td>
<td></td>
</tr>
<tr>
<td>Intended</td>
<td>Student evaluations of faculty are absolutely vital to the integrity of the institution. It is really vital for every student to have an opportunity to evaluate in every class.</td>
</tr>
<tr>
<td>Unintended</td>
<td>Sometimes faculty perceive this as a discipline tool.</td>
</tr>
<tr>
<td>2. Administrators</td>
<td></td>
</tr>
<tr>
<td>Attitudes</td>
<td></td>
</tr>
<tr>
<td>Rationale Significance</td>
<td>You can’t look at any of this data in isolation. Don’t make judgments merely on the basis of a set of evaluation, a number from a particular classroom in a particular semester.</td>
</tr>
<tr>
<td>Practical Significance</td>
<td>They’re just one thing I am noticing about what is going on in the department, what is going on with faculty. I expect people to do their own reflection on it.</td>
</tr>
<tr>
<td>3. Instrument</td>
<td></td>
</tr>
<tr>
<td>Validity Concerns</td>
<td>I get a sense there is no real sense of validity to what it is we are doing right now. So that is why there are real questions about what questions we are asking, what is the use for these questions, what are we trying to find out. A lot of times these things just sort of grow on their own.</td>
</tr>
<tr>
<td>4. Impact on Instruction</td>
<td></td>
</tr>
<tr>
<td>Intended</td>
<td>Technology is a good example. We look for our instructors to use it in the classroom. We look for it on questions in the evaluation and that is an easy fix in many situations. If someone is not really using it or using it all, they can take classes—take a workshop on developing their own technology skills.</td>
</tr>
<tr>
<td>Unintended</td>
<td>It is not just getting the feedback, but what is my plan for doing something with the feedback. I know many faculty who feel they are meaningless. They’re (SRTs) not giving them anything.</td>
</tr>
<tr>
<td>5. Impact on Evaluation</td>
<td></td>
</tr>
</tbody>
</table>
Minor Value is relatively small except it provides a basis for discussion where student feedback reinforces what classroom visits and other information has already pointed out.

Major For part-time faculty, it is one of the few pieces of information that we have and so in that situation it influences retention fairly strongly.

6. SRT Procedural Issues

Labor Intensive Process I think we are all looking forward to the time where it can be streamlined in some way or online in some fashion so we don’t have to be concerned about the pieces of paper.

Delivery of Results It’s that meaningful feedback. It is not timely at all.

The final process in data reduction was developing a textural description. The following textural description (see Table 46) represented the experience of student evaluation of teaching for administrators at Community College D. Relevant meaning units were linked thematically and synthesized to provide a description of the student evaluation practice and its impact on instruction and evaluation. The perceived value of student evaluation of teaching for this administrator group was similar in essence to those of administrators at the other four community colleges. However, this community college was in the process of examining its teacher evaluation practice, revising the institution’s classroom evaluation philosophy, and recreating its student evaluation instrument. In fact, this college was addressing several of the core concerns raised by administrators at the other four colleges. College D’s initiative to revamp its student evaluation practice was a result of internal accountability discussions. Data reflect verbatim descriptions from the three administrator participants.
A Description of Student Evaluations for One Group

This piece is the students’ voice. This is the voice in the classroom. The process is geared toward the students giving some contribution. If it (evaluation form) is just given to the students and the instructor says nothing about it, they (students) may not understand the importance of it, and they kind of just Christmas tree, bubble in the front side, and on the questions that ask for input not give any at all. I think most of our folks do try to encourage the students in a positive manner, not about giving a good evaluation but that this is an important process that gives me the feedback so that I can do a better job. I factor it (student evaluation) in as part of the evaluation of the faculty member as a whole. I go make classroom observations so that I can get firsthand appreciation. I read the evaluations and then also track the instructor’s success rates in terms of how many A, B, C, D, and Fs were given, so those are three major criteria that I look at. Then there are other criteria that I look at to determine how successful or effective they are. But I would say it (student evaluation) is a major part of trying to make that determination. You look at the big picture context. If you get 40 evaluations and all 40 are saying this is horrendous, I haven’t learned anything, then we’ve got a problem. But if you have one or two that are out of sync with the others, then you can chalk that up to personality differences or learning style differences. We are actually in the middle of evaluating the manner in which we do our student evaluations, so I am on a committee that has actually revamped the evaluation tool. The tool puts the onus on the student to be responsible for learning as well as on the instructor. That is a process that makes the student think more about his/her learning which the group thought was a better way to handle the evaluation rather than condemn the faculty member to the students’ personal opinions. We want our faculty members to succeed, to grow, to be as good as they can possibly be. By reading that (SRT), it can help pinpoint an area where a person needs to develop more. We would think to ourselves what can we do to help the person develop in that area. If they’re (students) writing things in, for example, in a geography class a significant number of students are writing in need more visuals, need more maps, it makes our jobs a lot easier to say to that person I am seeing this as a continuing problem. Or if it deals with issues such as impatience or inability to deal effectively with questions, then we would be ready to help that person if we didn’t already observe it. I think it (SRT) is very important in that way. I look at it as part of the decision not the exclusive point of decision but an important part of it. When I sit down to read my faculty evaluations, I am looking for the trends. If the majority of students are learning and successfully completing the class, I would be leery if it were 100% every time year after year, but if there are good successes, and evaluations are coming back in an overall positive manner, then how do the faculty respond to the evaluation—Did they do something with it? You can see the ones who sit down and really consider the evaluation and consider what the students wrote and implement that. The instructors have got to do everything they can do, but the students have to do everything they can do before real success will occur because succeeding is a 50/50 effort. They (faculty) wanted the burden of the tool to fall somewhat on the students. The students are responsible for their own learning.
Imaginative Variation: How Evaluations Were Experienced

The previous individual textural description completed the data reduction process of the interview data for this community college. Analysis continued with the imaginative variation phase (Moustakas, 1994). In describing the underlying and participating factors that contributed to this group’s experience with student evaluation, the researcher recognized that the participants were volunteers who responded to their vice president’s request to participate in the study. Their participation in the interview validated their interest in the student evaluation process. An analysis of the above individual textural description was used to develop the following individual structural description that described how the student evaluation phenomenon was experience by this group of administrators at Community College D (see Table 47).

Table 47: Individual Structural Description for Community College D Administrators

<table>
<thead>
<tr>
<th>How Student Evaluations Were Experienced by One Group: A Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The causal structure that framed the administrators’ perceptions of student evaluation was expressed in the relationships between the “voice of the students” and “students giving some contribution”; between the process and how the teacher communicated its importance to the students; and between how “it (student evaluation) can help pinpoint an area where a person needs to develop more” and how the administrators can “help the person develop in that area.” In order to achieve these intended results, the academic administrators at this community college, who had been supported by faculty input, recognized the importance of revamping the evaluation tool in order to validate “students giving some contribution” so that faculty will “sit down and really consider the evaluation and consider what the students wrote and implement that.” Through movement toward adopting a new instrument and philosophy of classroom evaluation, this relationship between student engagement and the teacher evaluation process is being reframed. The three administrators in this group described the value of the new evaluation paradigm as follows: “The instructors have got to do everything they can do, but the students have to do everything they can do before real success will occur.”</td>
</tr>
</tbody>
</table>

Note. Words in parentheses were added to clarify preceding pronouns.
Table 48 illustrates the composite textural description constructed from analysis of the invariant meanings and core themes to characterize the student evaluation practice.

Table 48: Composite Textural Description for the Five Administrator Groups

<table>
<thead>
<tr>
<th>A Description of Student Evaluations</th>
</tr>
</thead>
</table>
| Administrators expressed the belief that student evaluations were “worthwhile” and that the feedback from students gave the “faculty the opportunity to reflect on what is going well in the classroom and what is not going well.” In describing the intended purpose of the student evaluation practice, administrators believed the value came from student participation, but they also recognized that “sometimes we don’t ask the right questions on student evaluations.” However, the general consensus among the participants was “even if we had an instrument we were much more confident in then the one we have now, we still think it is the faculty’s own self-reflection” and their reflecting on the data seriously and “thinking about ways they can improve what they are doing that it does have an effect.” The administrator group described the unintended outcome of the student evaluation practice as “apprehension on part of the faculty.” Administrators agreed that “you can’t look at any of this data in isolation. Don’t make judgments merely on the basis of a set of evaluation, a number from a particular classroom in a particular semester.” Rather the practical significance of student evaluations came from the results being “part of the evaluation of the faculty member as a whole”; its use was primarily intended to “follow trends over time.” Administrators recognized that some students may not see the value of the SRT practice and, thus, explained “why you see students go straight down a column.” The administrators were aware that the SRT practice at their institutions involved validity issues with the instrument quality and ratings function. With few exceptions, the administrators believed the impact of the results on instruction from student evaluations was “marginally to moderately useful.” Primarily, “data were returned to the instructor for inclusion into their reflective self-evaluation.” The use of the results to impact evaluation was evident more with “adjuncts applying for full time positions”; “it is one of the few pieces of information that we have and so in that situation it influences retention fairly strongly.” For full time faculty, the results might be used as part of a discussion to “talk about that experience”; or as a tool to assist new, non-tenured faculty. If faculty were going for tenure, “the committee generally looks for did we see an improvement.” SRT feedback was typically part of the annual evaluation with full time faculty and not part of a separate conversation. The SRT practice was perceived by the group as “such a time-consuming manual process; it has really turned it in to something so cumbersome.” They recognized the difficulties with procedural issues including timing of the instrument administration and delivering the results to faculty. “I think we are all looking forward to the time where it can be streamlined in some way or online in some fashion so we don’t have to be concerned about the pieces of paper.”

132
Through the same analysis process of imaginative variation (Moustakas, 1994) that was used to construct the individual structural description, a composite structural description was developed for the 5 administrator groups (see Table 49).

Table 49: Composite Structural Description for the Five Administrator Groups

<table>
<thead>
<tr>
<th>How Student Evaluations Were Experienced: A Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The administrator group generally believed that the value of student evaluations was in “the time spent is worth it in terms of the integrity of the institution.” It was evident that each institution had an adopted practice. Three of the schools engaged students in the ratings practice during the fall and spring semesters, while two of the schools involved students in completing SRTs only once per academic year. Common thoughts shared from the administrator group were the following: “I think it is a valuable tool, but I don’t know we properly use it.” “Value is relatively small except it provides a basis for discussion where student feedback reinforces what classroom visits and other information has already pointed out.” “If I have a bad instructor, I am getting a ton of calls, a ton of emails before we do the evaluations. That influences my decision much more than the survey instrument.” One institution was actively engaged in examining its student evaluation philosophy and reviewing its instrument and procedures for collecting student input. Another college had recently begun a review process by organizing a committee to examine its student ratings practice, while the other three colleges had not meaningfully examined their instruments or procedures in the last eight or more years. In the words of one administrator, “I get a sense there is no real sense of validity to what it is we are doing right now. So that is why there are real questions about what questions we are asking, what is the use for these questions, what are we trying to find out. A lot of times these things just sort of grow on their own.” Some of the administrators sought to deemphasize the name of the instruments and referred to them as tools to collect student perceptions or student opinions rather than student evaluations of teachers. This was done as an effort to deflect the concerns of some faculty. Administrators emphasized the value of student feedback, but stressed the institutional challenges presented by the process of survey distribution, data analysis, and timely feedback to faculty. Further, administrators voiced the need to engage the students in the practice and in the importance of “getting the feedback to the students so that they feel like the process was worthwhile for them and didn’t waste their time”; “Students need to feel more part of the process. They don’t know what happens after that.” Further, administrators recognized their time limitations. “There is just not enough time in a semester to sit down with every adjunct and say ‘here’s your evaluation; this is what I think’.” Overall, the administrators believed student evaluations should be part of faculty self-evaluation. “The value comes from the faculty doing his/her own self-evaluation. That is the crux of being a professional.”</td>
</tr>
</tbody>
</table>
Synthesis

The last process in phenomenological analysis “is the intuitive integration of the fundamental textural and structural descriptions into a unified statement of the essence of the experience of the phenomenon as a whole” (Moustakas, 1994, p. 100). Table 50 presents a single unifying description of the experience of student evaluations for the 17 administrator participants.

Table 50: Textural-Structural Synthesis: Administrators’ Perceptions of the SRT

<table>
<thead>
<tr>
<th>The Value of Student Ratings and Its Impact on Instruction and Faculty Evaluation: A Description</th>
</tr>
</thead>
</table>

For the administrator group, the value of student evaluations was in two domains: evaluation existence and faculty use of the feedback. “That they exist is the most important thing for the administration at this point.” “The value comes from the faculty doing his/her own self-evaluation.” Student evaluations provided limited reciprocal value for students, faculty, and administrators. “Students here are very skeptical about their use, but if they don’t get an opportunity to evaluate they are not happy.” “There are just lots of faculty members that the evaluation just doesn’t tell you anything that you don’t already know.” The questions on the instruments are so general that “they’re not giving them (faculty) anything.” “These are almost the baseline that the faculty member should do.” Administrators believed the impact on instruction depended on “instructors really being conscientious about the comments they received and wanting to take those to heart to improve their teaching performance.” Administrators made a distinction when reviewing student evaluation results and weighing the impact on evaluation. The importance and the consequence of the student feedback depended on the faculty member’s employment status: adjunct or full time position. “For part time faculty, it is one of the few pieces of information that we have and so in that situation it influences retention fairly strongly.” “Faculty know that I take student input very seriously. They know that I take numbers with a grain of salt.” The data from student evaluations had a minimal effect on full time faculty evaluation. “They’re just one thing I am noticing about what is going on in the department, what is going on with faculty, and I expect people to do their own reflection on it.” Overall, for the administrator group the value of student ratings is vital to institutional integrity but marginally effective in its impact on instruction and evaluation.

Note. Word in parentheses was added to clarify preceding pronoun.
This statement, which includes verbatim quotations from administrator transcripts, is a descriptive summary of the analysis regarding the participants’ perceptions of student evaluations and how the results from student evaluations impact instruction and faculty evaluation.

To summarize the descriptions of administrator participants’ experiences with student ratings, the following perceptions regarding the student evaluation practice were noted: (a) administrators believed that engaging students in the faculty evaluation practice had value; however, (b) this value appeared to be in the simple action of student involvement rather than expecting to receive significant information concerning teaching effectiveness; (c) SRT results were an important source of information when determining the rehiring of adjunct instructors but of limited value in overall evaluation of full time faculty.

Summary

The results from the descriptive and inferential statistics which were used to analyze the quantitative and qualitative data were reported in Chapter 4. This research examined the perceptions that 358 Florida community college students, faculty, and administrators held regarding the student ratings practice. Data were collected through survey and interview questionnaires administered at five Florida community colleges.

To assess how students in Florida community colleges perceived the value of their role as faculty evaluators (Research Question 1), the researcher used seven survey items identified through factor analysis that grouped under the construct, Beliefs about Student Ratings. Descriptive analysis for the seven survey items indicated the following: Results
of the student surveys demonstrated that a large majority of the students (88.1%, \(n = 282 \)) agreed or strongly agreed that students should complete formal evaluations of their instructors. However, 96 students (30%) did not believe that students took the process of evaluating their teachers seriously, yet 145 students (45.3%) agreed or strongly agreed that students took the process of evaluating their instructors seriously. The majority of students (67.2%, \(n = 215 \)) agreed or strongly agreed with the survey statement that student surveys were a valuable method of evaluating instructors. Furthermore, students were equally divided between those who believed students provided fair evaluations of their instructors (50.3%, \(n = 161 \)) and those who did not believe this to be a fact or did not know (49.4%, \(n = 158 \)). A large majority of students (79.4%, \(n = 242 \)) agreed or strongly agreed with the statement that students knew the qualities of an effective teacher. The great majority of students (95%, \(n = 304 \)) agreed or strongly agreed with the statement that administrators should inform professors about the results from the student ratings. The large majority of community college students (79.7%, \(n = 255 \)) agreed or strongly agreed with the statement that a summary of the results from the student evaluations should be available online for students to review. In addition, descriptive analysis of the data from the composite profile of the seven statements underlying the Beliefs about Student Ratings construct indicated that the large majority of the sample group of community college students (72.2%) believed that student ratings had value, and, thus their role as teacher evaluator was important.

A one-way analysis of variance (ANOVA) was conducted to determine if there were any statistically significant differences between the overall Beliefs Scale mean (dependent variable) and students’ gender and program of study. Although there was no
statistically significant difference between the student’s program of study and Beliefs Scale mean, results indicated a statistically significant differences (p < .01) between gender and the Beliefs Scale mean. The mean female student response was 4.01 (SD = .542), whereas the mean male student response was 3.73 (SD = .601).

Simple linear regression indicated that there was not a lot of practical significance between the demographic variables of age or credits earned as predictors of a student’s score for the Beliefs Scale. The regression equation for age predicted that a change in age resulted in a slight increase in Beliefs Scale score of .012. The regression equation for credits earned predicted that a change in credits earned resulted in a slight increase in Beliefs Scale score of .001.

To determine if there was a statistically significant relationship between students’ perceptions of the relevance or importance of the student survey for evaluating professors and how students believed the survey results were used (Research Question 2), correlational analyses were conducted. First, a Pearson product-moment correlation coefficient was computed to assess the degree that the total score from the four-item Importance of Student Ratings Scale and the total score from the four-item Effects of Student Ratings Scale were related. The correlation between the Importance of Student Ratings Scale and the Effects of Student Ratings Scale was statistically significant, \(r(318) = .397, p < .01 \). This suggested a medium relationship existed between students’ perceptions of the relevance or importance of the student survey for evaluating professors and how students believed the survey results were used. Next, Spearman’s rank correlation coefficients were calculated to describe the correlation among the variables within each set of ranked data for perceived importance and perceived effects. In general,
the results indicated moderate to strong relationships. Measures of association between the survey items from the Importance of Student Ratings Scale and the Effects of Student Ratings Scale suggested a low to moderate association between student perceptions about the importance of student ratings and the effects of student ratings. Analysis for Research Question 2 continued with descriptive statistics provided for the 8 individual survey factors underlying the 2 scales. Finally, descriptive measures were used to describe the students’ general opinions about the importance of student ratings and the effects of student ratings. The majority of the sample group of students (61%) believed that student ratings had importance. However, the majority of the sample group of students (84.1%) believed that student ratings had an uncertain or no effect. It was noteworthy that 124 students, which represented 39% of the 320 respondents, entered comments on the survey. The most frequent written comment indicated that students perceived student ratings as having an uncertain value ($n = 38, 31\%$).

The data from the faculty responses to the survey and to the interview questions were used to address Research Question 3. First, an independent-samples t test was used to test the null hypothesis that there was no statistically significant mean difference on the total Grading Faculty survey responses between student and faculty. Although the student response was slightly more positive than the faculty response, the mean total survey response indicated no statistically significant total mean difference.

To analyze the transcribed data from the questionnaires which were used during the 5 faculty interview sessions and to describe the value of the student evaluation practice for the 21 Florida community college faculty participants, the researcher used the Moustakas (1994) method for organizing and analyzing phenomenological data.
Descriptive analysis of the lengthy data suggested that a significant relationship between the results from the student evaluations being used as a method to impact instruction was not demonstrated through the currently adopted student evaluation practices among the five participating community colleges.

The Moustakas method (1994) was also used to analyze the transcribed data from the questionnaires which were used during the 5 administrator interview sessions and to describe the value of the student evaluation practice for the 17 Florida community college administrator participants. Overall, for the administrator group the value of student ratings was vital to institutional integrity but marginally effective in its impact on instruction and evaluation. Of significance was the fact that two of the five colleges had begun the process to examine their student evaluation practices. One of the community colleges had revised its philosophy to include the critical role of students in the teaching and learning process. This college had revamped its student evaluation tool in order to reflect the responsibility that the students must have to affect learning.
CHAPTER 5
DISCUSSION OF FINDINGS AND RECOMMENDATIONS

Introduction

Chapter 5 provides discussion and proposes an interpretation of the data analyses from Chapter 4. The chapter begins with an overview of the statement of the problem and the purpose for this research; the chapter continues with discussion of the previous chapter’s data analyses of the four research questions advancing this study. This chapter offers implications for student evaluation practices and concludes with recommendations for future student ratings research.

Statement of the Problem

Colleges and universities have invested time, personnel, and money into the process of students’ evaluation of faculty through the use of various forms of the student ratings of teaching. These data provide one measure of evaluating the quality and effectiveness of instruction. Despite there being positive uses of the data from student ratings, Ory and Ryan (2001) noted that there are unintended uses of the data. One example of an unintended consequence stated by Ory and Ryan was that “the rating process becomes a meaningless activity that is performed by students and instructors only because it is mandated” (2001, p. 40). Penny (2003) raised the issue that ratings research has been limited due to the research focus on “…issues pertaining to the validity and reliability, rather than how best to use student ratings…” (p. 399).
This research responded to the lack of emphasis on more effective use of the data for the purpose of improving teaching effectiveness by questioning the opinions and practices of the three stakeholder groups: students, faculty, and administrators. More importantly, this research raised the question of the value of SRTs: Is the effort of doing SRTs worth the institutional investment or is it simply a routine process which has little or no effect on improving teaching effectiveness?

Purpose of the Study

Students in the higher education system have assumed a major role in the evaluation of faculty. Data from the student ratings become part of the faculty member’s file and can have a direct impact on personnel decisions. Results from the student ratings can affect annual evaluations, merit pay, advancement in faculty rank, and tenure opportunities. Students may or may not be aware of the influence their responses have in the evaluation of faculty. Therefore, in order to improve the process of formal student evaluation of faculty, it is important to examine the perceptions students have about SRTs. The purposes of this research were to: (a) assess community college students’ perceptions of the student evaluation practice; (b) assess community college faculty members’ responses to student evaluations of teachers and the extent to which instructional modifications result from student ratings; and (c) assess community college administrators’ responses to student evaluations of teachers, the extent student ratings influence administrators’ evaluations of faculty, and how the results from student ratings are used to promote instructional effectiveness.
Summary and Discussion of Statistical Findings

A total of 358 student, faculty, and administrator participants from 5 Florida community colleges contributed their opinions on the value of student ratings of teaching. The student sample consisted of 320 participants; the faculty sample consisted of 21 faculty members and the administrator sample consisted of 17 volunteers. The researcher studied each group’s perceptions about the value of student ratings through personal contact with each participant. To examine and understand the phenomenon or the meaning of the experience of student ratings for each stakeholder group (students, faculty members, and administrators), the researcher became one of the three instruments for data collection. The other instruments for data collection were surveys and interview questionnaires. Each survey and interview session was conducted on location at the respective participating community college.

In conducting this quantitative and qualitative study, the researcher consciously set aside personal experiences with student evaluations in order for the interview sessions and data interpretation processes to be understood through the experiences of the participants (Moustakas, 1994). The researcher had personal experiences with SRTs as both a faculty member, who had been evaluated by students for more than 10 years, and as a department chairperson, who used results from SRTs when evaluating full time and adjunct faculty within the department. Using the principles for survey design recommended by Dillman (1999), the researcher developed the Grading Faculty survey and interview questionnaires to address the four research questions. Moreover, the phenomenological methodology outlined by Moustakas (1994) was used to organize and analyze the qualitative data.
Research Question 1

How did students in Florida community colleges perceive the value of their role as faculty evaluators? For this study, the definition of value referred to participants’ beliefs about the usefulness, importance, or general worth of the SRT practice. The student sample included 320 participants who were asked to complete a 19-item survey. The survey was administered by the researcher during a regularly scheduled class session. In addition to the 15 survey statements, the student version of the survey asked students to respond to 4 demographic questions: gender, age, program of study, and approximate number of college credits earned. There were more female participants ($n = 203$) than male participants ($n = 116$). The mean age for the student group was 25.13 years and the ages ranged from 18 to 56 years. The most frequent age reported was 21 ($n = 57$). Seven students did not respond to the age question. The demographics of gender and age were comparable to the community college system student profile (American Association of Community Colleges, 2004). The majority of students (60%) identified the associate of arts as their program of study. The associate of science program was identified by 27.2% of the students followed by the associate of applied science (8.4%), personal interest (3.4%), and vocational certificate programs (0.6%). Nearly 8% ($n = 25$) of the students did not answer or misunderstood this question regarding the number of college credits or semester hours earned. Of the 295 students who responded with usable data, the mean number of credits earned was 47.03 semester hours.

Results from data analyses from survey statements, 1-5, 10, and 15 were used to describe the 320 community college students’ perceived value of their role as faculty
evaluators. These seven statements comprised the scale, Beliefs about Student Ratings. The students rated the survey statements on a scale of 1 to 5: (1 = strongly disagree, 2 = disagree, 3 = neither agree nor disagree, 4 = agree; and 5 = strongly agree). Research Question 1 was examined in three phases using descriptive and inferential statistics.

Survey statement 1 asked if students should complete formal evaluations of their instructors. A large majority of the students (88.1%) agreed or strongly agreed that students should complete formal evaluations of their instructors.

Survey statement 2 asked if students took the process of evaluating their instructors seriously. Overall, nearly half of the community college students (45.3%) believed that students took the process of evaluating their teachers seriously, but slightly over half of the students did not believe this to be a fact or did not know (54.7%).

Survey statement 3 asked if student surveys were a valuable method of evaluating instructors. Overall, 67.2% of the students believed that student surveys were an important system of teacher evaluation.

Survey statement 4 asked if students provided fair evaluations of their instructors. Students were almost evenly divided between those who believed students provided fair evaluations of their instructors (50.3%) and those who did not believe this to be a fact or did not know (49.4%).

Survey statement 5 asked if students knew the qualities of an effective teacher. Overall, 79.4% of the community college student respondents believed that students knew the characteristics of an effective teacher.
 Survey statement 10 asked if administrators should inform professors about the results. The great majority of students (95%) agreed or strongly agreed that college administrators should tell faculty members about the student ratings results.

Survey statement 15 asked if a summary of the results from student evaluations should be available online for students to review. Overall, 79.7% of the community college students believed that a summary of student ratings should be accessible through online resources.

In summarizing the seven statements underlying the construct, Beliefs about Student Ratings, the researcher developed the following conclusions: the large majority of community college students strongly believed that students should complete formal evaluations of their instructors, that administrators should inform faculty about the ratings, and that a summary of the results should be available online. Furthermore, participants believed that students, in general, took the process of evaluating their instructors seriously, that student surveys were a valuable method of evaluating instructors, that students provided fair evaluations of their instructors, and that students knew the qualities of an effective teacher.

In the second analysis phase for Research Question 1, students’ responses from the 7 statements were categorized according to perceived value to describe the composite variable, Beliefs about the Value of Student Ratings. Based on descriptive analysis of the 2237 responses to the 7 survey statements underlying scale 1, the large majority of the sample group of community college students (72.2%) believed that student ratings had value, and, thus their role as teacher evaluator was important.
The third analysis phase for Research Question 1 examined the effects that the student demographic variables (gender, program of study, age, and credits earned) had on the dependent variable (scale mean for the seven beliefs underlying Scale 1, Beliefs about Student Ratings). A one-way analysis of variances (ANOVA) indicated a statistically significant difference between gender and the Beliefs Scale mean, $F(1, 317) = 17.61, p < .01$. There was a statistically significant difference in the means between the male ($M = 3.7, SD = .60$) and female ($M = 4.0, SD = .54$) respondents. The female respondents tended to respond slightly more positive than the male respondents. A one-way analysis of variances (ANOVA) indicated no statistically significant difference between program of study and the Beliefs Scale mean. This finding suggested that a student’s program of study does not bias the student’s perceptions regarding student evaluations. This sample of students held similar beliefs about student ratings. This finding was different from previous research which indicated that student ratings were slightly biased by discipline. However, it is important to note that the present study focused on general perceptions regarding the student evaluation practice and not the evaluation of a specific course.

Furthermore, simple linear regression indicated that neither age nor credits earned accounted for a lot of practical significance in predicting the Beliefs Scale mean score. This finding supported previous research that student age does not bias ratings. Centra (1993) reported that a common myth was that more mature students provided more valid student ratings than younger students. For this group of community college students, gender affected the responses to the Beliefs Scale, but program of study, age, and credits earned had slight or no significance to the Beliefs Scale mean score.
McKeachie (1997) noted that students have not been trained to be teacher evaluators nor were students’ concepts of effective teaching similar. Findings from this study indicated that this student sample believed their role in the evaluation of faculty was important and that they recognized the characteristics of effective instructors. However, training students to be more effective evaluators could enhance the quality of feedback particularly the written comments that faculty in this study indicated that they preferred.

Dunegan and Hrivnak (2003) raised important concerns about deficiencies in the SET process including the possibility that the procedures may be creating the mindless manner in which students respond. In offering recommendations to improve the system, these two researchers suggested that “most academic institutions have not been very active in making students feel their SET input is being used or valued” (p.299). Therefore, affirming the purpose of student evaluation, training students to provide meaningful feedback, and affirming the value of the students’ opinions could improve the quality of responses and reward the institutional effort. Although the findings from this study indicated that students believed students, in general, took the evaluation process seriously and were generally fair in their assessment of teachers, student feedback may be improved if the institution confirmed the value of their role in the faculty assessment process.

Research Question 2

Was there a statistically significant relationship between students’ perceptions of the relevance or importance of the student survey for evaluating professors and how
students believed the survey results were used? Students’ responses to survey items 6-9 and 11-14 were used to provide the data for Research Question 2. Importance of Student Ratings included survey items 6-9, and Effects of Student Ratings included survey items 11-14. A Pearson product-moment correlation coefficient was computed to assess the degree that the total score from the Importance of Student Ratings Scale was related to the total score from the Effects of Student Ratings Scale to provide a measure of the relationship between perceived importance and perceived effects of student ratings. The correlation between the Importance of Student Ratings Scale and the Effects of Student Ratings Scale was statistically significant, \(r(318) = .397, p < .01 \). A significant linear relationship existed between the two scales. Results indicated a medium positive relationship between students’ perceptions of the relevance or importance of the student survey for evaluating professors and how students believed the survey results were used.

Descriptive statistics were used to analyze the responses to each of the eight survey statements which described the eight variables underlying the two dimensions. Survey statement 6 asked if student evaluations were important to the college administrators. The majority of students (62.2%) believed that college administrators valued student evaluations.

Survey statement 7 asked if student evaluations were important to the instructor. The large majority of students (72.2%) believed that instructors valued student ratings.

Survey statement 8 asked if professors cared about the opinions of their students. The majority of community college student participants (63.1%) believed that teachers valued their opinions.
Survey statement 9 asked if professors used class evaluations to improve their teaching. Student responses reflected that less than a majority (45.9%) believed that student ratings were valued by professors as a resource to improve their teaching. Most notable was the fact that 123 students (38.4%) neither agreed nor disagreed with this statement.

Survey statement 11 asked if professors changed their grading system based on feedback from the evaluations. The large majority of students (83.7%) believed that results from student evaluations had an uncertain or no effect on professors’ adjustments to a course grading system. Most notable was the fact that 155 students (48.4%) neither agreed nor disagreed with this statement.

Survey statement 12 asked if results from student evaluations were used to dismiss professors. The overwhelming majority of students (89.1%) believed that results from student evaluations had an uncertain or no effect on dismissal status for faculty members. Most notable was the fact that 172 students (53.8%) disagreed or strongly disagreed with this statement.

Survey statement 13 asked if results from student evaluations were used to promote professors. The overwhelming majority of students (77.5%) believed that results from student evaluations had an uncertain or no effect on promotion status for teachers. Most notable was the fact that 141 students (44.1%) neither agreed nor disagreed with this statement.

Survey statement 14 asked if results from student evaluations influenced faculty salary increases. The overwhelming majority of students (85%) believed that results from student evaluations had an uncertain or no effect on salary increases for teachers. Most
notable was the fact that 142 students (44.4%) neither agreed nor disagreed with this statement, and 130 students (40.6%) disagreed or strongly disagreed with this statement.

In summarizing the eight statements underlying the two constructs, Importance of Student Ratings and Effects of Student Ratings, the researcher developed the following conclusions: the large majority of community college students believed that student evaluations were important to the college administrators, that student evaluations were important to the instructor, and that professors cared about the opinions of their students. However, it was evident that participants, in general, did not know how the results from the student evaluations were being used. Students most frequently responded neither agree nor disagree to the following statements: professors used class evaluations to improve their teaching, professors changed their grading system based on feedback from the evaluations, results from student evaluations were used to promote professors, and results from student evaluations influenced faculty salary increases. In fact, more than half of the respondents (53.8%) generally did not believe that student ratings results were used to dismiss professors. The findings from these survey factors supported the principles of Theall and Franklin (2001) who suggested a comprehensive and effective evaluation system should establish the purpose of the evaluation and the uses and users of ratings. Students in this study believed ratings were important, but they did not know the consequences of their involvement.

Descriptive statistics were used to describe the students’ general opinions about the perceived value of the importance of student ratings. Based on the 1278 responses to the 4 survey statements underlying dimension 2, Importance of Student Ratings Scale, the majority of the sample group of community college students (61%) believed that student
ratings had importance for administrators and faculty. Conversely, based on the 1276 responses to the 4 survey statements underlying dimension 3, Effects of Student Ratings Scale, the majority of the sample group of community college students (84.1%) believed that student ratings had an uncertain effect (43.2%) or no effect (40.9%). This finding offers an explanation as to why some students may hurriedly complete a student evaluation form. Their not knowing what effects the ratings could have on faculty assessment may lead to the mindless completion of the evaluation form. This fact lends support to the research of Dunegan and Hrivnak (2003) on student cognition. Their research suggested that “students might not be completing the SET instruments as deliberately and mindfully as we would hope” (p. 300). Marsh and Roche (1997) reported that when the purpose of the evaluation is known to be for tenure or promotion students tend to rate higher.

In addition to the survey statements and demographic questions on the survey form, there was additional space for students to enter comments. Analyses of written comments which were provided by 124 students indicated that students were divided on the perceived value of student ratings; 25% believed student ratings had no value; 27% believed student evaluations had value; 31% believed student evaluations had uncertain value. Comments not related to student ratings were assigned to a general comments category and were not assigned a value.

Overall, the majority of students believed that student evaluations had importance for faculty and administrators. However, students were unaware of the effects that student evaluations had on professors changing their grading systems, faculty promotions, and teacher salary increases. Interestingly, students overwhelming believed results from
student evaluations were not used to dismiss professors. Although a Pearson product-moment correlation coefficient indicated that there was a statistically significant medium positive relationship between the Importance of Student Ratings Scale and the Effects of Student Ratings Scale, this correlation accounted for approximately 16% of the common variance. Furthermore, almost 84% of the variance between the 2 scales was influenced by other factors. Ory and Ryan (2001) suggested that there needed to be research on understanding the ratings process and its consequences to improve validity. Based on this research study, students believed ratings were important but did not know the effects of the evaluations. Their knowing how the student evaluations affected the teaching and learning process could enhance students’ efforts while completing the evaluation forms.

Research Question 3

What were the Florida community college faculty member respondents’ perceptions of the student evaluation process and its impact on instruction? In this study, process and practice were terms used to denote the customary action or series of actions leading to the use of student rating forms to evaluate teaching effectiveness. The researcher enlisted the assistance from each community college academic vice president to secure faculty participants. Data were collected from 21 Florida community college faculty members during 5 interview sessions. Each interview session was conducted at the participating college location. At the conclusion of the 90-minute interview session, each faculty participant was asked to respond to the same 15 survey statements which were administered to the student participants. However, the faculty version of the survey asked faculty to respond to 6 demographic questions including identifying their gender;
faculty employment status—adjunct or full time; faculty position—non-tenured or tenured; faculty rank—instructor, assistant professor, associate professor, professor, or senior professor; and area of primary instruction—college preparatory, associate of arts general education, associate of science/associate of applied science, vocational certificate, or combination of the above; and total years teaching in higher education. Descriptive results indicated that the faculty group included more female (61.9%) than male (38.1%) participants. Faculty members were primarily full time (95.2%). One part time instructor contributed to the study. The majority of teachers indicated that they were tenured (66.7%). The most frequent rank identified was associate professor (38.1%). Most of the faculty taught either in the associate of arts general education programs (38.1%) or the associate of science/associate of applied science programs (28.6%). The average number of years of higher education teaching was 16.48; the years of higher education teaching ranged from 2 years to 31 years.

The data from the faculty responses to the survey and to the interview questions were used to address Research Question 3. Two analysis procedures were used, inferential statistics and phenomenological inquiry. Inferential statistics tested the hypothesis that the student group and the faculty group were similar in their overall perceptions regarding the student evaluation practice. Results of the independent-samples t test was not statistically significant, t(339) = .924, p = .356. The effect size (d = .21) indicated a small difference between the means of the two groups. The average mean response for the 15 survey items for the student group was 3.5 (SD=.51), and the average mean response for the faculty group was 3.4 (SD=.62). The average total mean survey response between the faculty and student groups indicated no statistically significant total
mean difference; therefore, the null hypothesis was not rejected. Although student responses were slightly more positive than faculty responses, the total mean response from both groups suggested more uncertainty than certainty regarding the general value of SRTs.

The Moustakas (1994) method for organizing and analyzing phenomenological data was used to analyze the transcribed data from the interview sessions and to develop a composite statement highlighting the essence of student ratings for the faculty group. In order to construct the composite or essence statement, each interview experience was analyzed through a series of processes: Epoch, Phenomenological Reduction, Imaginative Variation, and Synthesis (Moustakas, 1994). Analysis of the lengthy data from the five interview sessions suggested that a significant relationship between the results from the student evaluations being used as a method to impact instruction was not demonstrated through the currently adopted student evaluation practices among the five participating community colleges. This finding supported Centra (1993) who indicated that student ratings feedback will improve teaching if teachers learn something new and important from the results. The findings from this study indicated that ambiguous protocols, inadequate instruments, feelings of faculty trust juxtaposed with feelings of faculty distrust, and limited or non-existent feedback cast doubt on garnering significant data, and, thus student evaluation results had little effect on promoting teaching effectiveness.

A common belief among the community college faculty participants can be summarized with the following: “If you took all of the evaluations on campus, the average would probably be agree.” A unanimous sense of frustration surfaced with the “lousy instrument” and “wrong questions.” Many teachers devised their own methods for
finding out “what works in the classroom and what doesn’t.” Most teachers felt “written information is much more effective than just the number information.” Overall, for this group of community college faculty participants, their perceptions of the student evaluation process and its impact on instruction could be described as lacking effectiveness. Research by Marsh (1987) and Marsh and Roche (1993) indicated that student evaluations could influence teaching effectiveness provided appropriate consultation was awarded. For many of the participants in the current study, they described their frustration with receiving minimal and timely feedback. The institutionalized student evaluation practice for these faculty participants appeared to be a directive which held nominal significance.

Research Question 4

What were the Florida community college administrators’ perceptions of the student evaluation process and its impact on instruction and faculty evaluation? With the assistance of the academic vice presidents from each of the 5 participating community colleges, data were collected from 17 Florida community college administrator participants during 5 administrator interview sessions. For purposes of this research, administrator was defined as a community college program manager, department chair, dean, and vice-president whose job function included supervising and evaluating faculty. There was almost equal representation between female (52.9%) administrators and male (47.1%) administrators. More deans or assistant deans (41.2%) participated in the interview sessions. Vice presidents from three of the five community colleges joined in one of the interview sessions. At one of the community colleges, the evaluation of faculty
was not conducted at the department chair level. That duty was reserved for the level of
dean. At another community college, program managers were involved in the evaluation
of faculty.

The data from the responses to the interview questions were used to address
Research Question 4. The phenomenological data analysis approach advanced by
Moustakas (1994) was used to organize and analyze the data in order to construct the
composite or essence statement. Overall, for the administrator group the value of the
student ratings practice was in its existence. Having a process which gave students a
voice was vital to institutional integrity. However, results from student evaluations were
marginally effective in their impact on instruction and evaluation. The following excerpts
were taken from the administrators’ transcripts. “That they exist is the most important
thing for the administration at this point.” “Students here are very skeptical about their
use, but if they don’t get an opportunity to evaluate they are not happy.” “There are just
lots of faculty members that the evaluation just doesn’t tell you anything that you don’t
already know.” “The value comes from the faculty doing his/her own self-evaluation.”
Administrators believed the impact on instruction depended on “instructors really being
conscientious about the comments they received and wanting to take those to heart to
improve their teaching performance.” However, the administrators made a distinction
when reviewing student evaluation results and weighing the impact on faculty evaluation.
The importance and the consequence of the student feedback depended on the faculty
member’s employment status. Results from student evaluations were typically of greater
value when deciding whether to rehire an adjunct instructor. The following is a comment
which described the belief of many administrators: “For part time faculty, it is one of the
few pieces of information that we have and so in that situation it influences retention fairly strongly."

The data from student evaluations had a minimal effect on full time faculty evaluation. The following comment represents a common perception: “They’re just one thing I am noticing about what is going on in the department, what is going on with faculty, and I expect people to do their own reflection on it.” In view of current student ratings research, this philosophy suggested prudence on the part of this group of community college administrators. The data from student evaluations at their institutions were not being used as the sole criteria for judging teaching effectiveness which was an issue raised by Cashin (1999), and Theall and Franklin (2001). Abrami, Theall, and Mets (2001) and Ory (2001) maintained that data from student ratings provide one important factor in the evaluation of teaching effectiveness. Abrami and d’Apollonia (1999) encouraged caution when using ratings in judging faculty and advocated “the use of ratings to make only gross distinctions regarding teaching effectiveness” (p. 519). The findings from this study supported that this was how the data were being used.

Of additional significance to this study was the fact that two of the five colleges had begun the process to examine their student evaluation practices. One of the community colleges had revised its philosophy to include the critical role of students in the teaching and learning process. This college had revamped its evaluation tool in order to reflect the responsibility that the students must have to affect learning.
Research Limitations

This study had two important limitations. Participants for the three sample groups were volunteers who may not have completely represented each of the sample populations. Thus, the assumption of independence may have been violated since this was not a simple random sample. Further, analysis and interpretation of the qualitative data were completed by a researcher who holds a faculty position which includes supervisory duties of evaluating faculty as a community college department chairperson. Another researcher may have examined the phenomenological data differently.

Implications for Student Evaluation Practices

This research posed the core question of the value of SRTs: Is the effort of doing SRTs worth the institutional investment or is it simply a routine process which has little or no effect on improving teaching effectiveness? Results from this study suggested that although the 320 community college students perceived their role as faculty evaluators as important and that student ratings had value, they were unsure of the overall effects that their evaluations had on faculty. Based upon the descriptions provided by the faculty participants, a significant relationship between the results from the student evaluations being used as a method to impact instruction was not demonstrated. Finally, for the administrator group although the value of student ratings was vital to institutional integrity, the results from student evaluations were marginally effective in their impact on enhancing instruction and of limited value in faculty evaluation. Of significance was the fact that the community college administrators in this study did not rely exclusively on
student ratings when making decisions on teaching performance; ratings were viewed as one source of information.

This study was conducted to examine the perceptions that community college students, faculty, and administrators had of the student evaluation practice. Implications for student evaluation practices drawn from this study included the need for institutions to: (a) assess the value of their student evaluation practice and its impact on teaching effectiveness; (b) define and clearly articulate a statement of purpose for conducting student evaluations; (c) refine procedures for administering the student evaluation practice; (d) examine their student evaluation practices and instrument on a regular review cycle; (e) adopt alternative methods for collecting and disseminating student feedback; (f) implement student evaluation measures that reflect the varied teaching approaches and diverse learning environments.

Recommendations for Future Studies

Although there has been extensive research in the area of student ratings as a measure of teaching effectiveness, there has been limited research on the usefulness of the data to promote teaching effectiveness and students’ attitudes regarding their role. To advance knowledge in the area of student evaluation of teaching effectiveness, the following research suggestions are offered:

1. Conduct an investigation at other colleges and universities throughout the United States to determine how student evaluation data are used to promote teaching effectiveness.
2. Conduct a study among the academic departments of an institution to compare the following: the methods used for providing student ratings feedback to faculty and students, the extent ratings information is used for faculty development, and the value of the student evaluation practice.

3. Design a study to investigate what general teaching behaviors students identify as effective and how they believe students could be more engaged in the assessment of the teaching and learning process.

4. Design a study to investigate the seriousness and fairness with which students evaluate their instructors and identify factors that may affect their judgment.

5. Examine online instructional evaluation models. An online evaluation system would decrease the manual processing of data and provide more timely feedback. These two issues were presented as primary problems for the current paper-based student evaluation system used by the community colleges in this study.
APPENDIX A

FLORIDA COMMUNITY COLLEGES
Florida Community College System \((n = 28) \)

Annual Unduplicated Student Headcount Enrollment by College 2002 – 2003

<table>
<thead>
<tr>
<th>College</th>
<th>Total</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brevard</td>
<td>28,009</td>
<td>10</td>
</tr>
<tr>
<td>Broward</td>
<td>53,821</td>
<td>5</td>
</tr>
<tr>
<td>Central Florida</td>
<td>20,797</td>
<td>17</td>
</tr>
<tr>
<td>Chipola</td>
<td>5,016</td>
<td>26</td>
</tr>
<tr>
<td>Daytona Beach</td>
<td>30,322</td>
<td>9*</td>
</tr>
<tr>
<td>Edison</td>
<td>17,068</td>
<td>19</td>
</tr>
<tr>
<td>FCC Jacksonville</td>
<td>58,601</td>
<td>2</td>
</tr>
<tr>
<td>Florida Keys</td>
<td>3,257</td>
<td>28</td>
</tr>
<tr>
<td>Gulf Coast</td>
<td>21,494</td>
<td>14</td>
</tr>
<tr>
<td>Hillsborough</td>
<td>44,500</td>
<td>7</td>
</tr>
<tr>
<td>Indian River</td>
<td>34,089</td>
<td>8*</td>
</tr>
<tr>
<td>Lake City</td>
<td>7,608</td>
<td>24</td>
</tr>
<tr>
<td>Lake-Sumter</td>
<td>6,688</td>
<td>25</td>
</tr>
<tr>
<td>Manatee</td>
<td>18,066</td>
<td>18</td>
</tr>
<tr>
<td>Miami-Dade</td>
<td>126,491</td>
<td>1</td>
</tr>
<tr>
<td>North Florida</td>
<td>3,335</td>
<td>27</td>
</tr>
<tr>
<td>Okaloosa-Walton</td>
<td>13,848</td>
<td>20</td>
</tr>
<tr>
<td>Palm Beach</td>
<td>45,400</td>
<td>6</td>
</tr>
<tr>
<td>Pasco-Hernando</td>
<td>12,775</td>
<td>21</td>
</tr>
<tr>
<td>Pensacola</td>
<td>21,213</td>
<td>15</td>
</tr>
<tr>
<td>Polk</td>
<td>20,866</td>
<td>16</td>
</tr>
<tr>
<td>St. Johns River</td>
<td>9,082</td>
<td>22</td>
</tr>
<tr>
<td>St. Petersburg</td>
<td>54,565</td>
<td>4</td>
</tr>
<tr>
<td>Santa Fe</td>
<td>22,903</td>
<td>13*</td>
</tr>
<tr>
<td>Seminole</td>
<td>27,173</td>
<td>11*</td>
</tr>
<tr>
<td>South Florida</td>
<td>8,358</td>
<td>23</td>
</tr>
<tr>
<td>Tallahassee</td>
<td>24,721</td>
<td>12*</td>
</tr>
<tr>
<td>Valencia</td>
<td>55,253</td>
<td>3</td>
</tr>
</tbody>
</table>

System Total \(795,319 \)

Note. *Denotes participating community colleges for this research project. Total headcount is an unduplicated count of students served by each college. This total excludes Recreation and Leisure Students. (U.S. Department of Education, National Center for Education Statistics: 1998 – 1999 through 2002 – 2003 Student Data Base)
APPENDIX B

NOTIFICATION LETTER
President/Vice President Name
Community College Name
Address

Dear President/Vice President:

A few days from now you will receive a request for Community College to participate in an important research project being conducted through the University of Central Florida, College of Education Graduate Program. The research concerns the student evaluation of instruction and how students, faculty, and administrators feel about students’ evaluation of teachers’ performance and how this information is used in the faculty evaluation process.

I am writing in advance because we have found many individuals prefer to know ahead of time that they will be contacted. The study is an important one that will help advance the concept of student as evaluator.

Thank you for your time and consideration. Your participation in this research study is important to its success.

Sincerely,

Judith P. Campbell
Professor and English Language Institute/ESOL Chairperson
College of Arts and Sciences
University of Central Florida Educational Leadership Ed.D.Student

P.S. You will receive a copy of the final research project as a gesture of my gratitude.
APPENDIX C

LETTER OF REQUEST
Dear President/Vice President:

I am writing to ask your help in a study being conducted through the University of Central Florida, College of Education Graduate Program. This study is part of an effort to examine the perceptions that students, faculty, and administrators have of the student evaluation process and how they believe the data impact instruction and evaluation. This evaluation process is commonly referred to as student ratings of teaching.

This study is limited to Florida community colleges which are similar in annual 2002-2003 unduplicated enrollment according to the National Center for Education Statistics. Therefore, the participation of your Community College will complement the research efforts.

Results from the study will be used to enhance existing knowledge in the research area of student ratings of teaching particularly the use of the results to improve teaching effectiveness.

With your assistance, I would like to arrange a visit to your campus during October or November. The study will involve surveying students and faculty. In addition, the project will include interviewing a small group of faculty and administrators. I will contact you by phone within the next week to schedule the visit.

If you have any questions or comments about this study, I would be happy to talk with you. Please contact me at DBCC (386) 506-4403 or by e-mail at campbeju@dbcc.edu.

Sincerely,

Judith P. Campbell
Professor and English Language Institute/ESOL Chairperson
College of Arts and Sciences
University of Central Florida Educational Leadership Ed.D.Student
APPENDIX D

INTERVIEW QUESTIONS – ADMINISTRATORS
Interview Protocol—Administrators (chair, dean, instructional vice-president)
Estimated interview time: 1 to 1 ½ hours per focus group session

Project: Evaluating Teacher Performance in Higher Education:
The Value of Student Ratings

Project Description: The significance of this study is to examine the perceptions that
students, faculty, and administrators have of the student evaluation process and how the
SRT data impact instruction and evaluation.

Questions:

1. What is your opinion of the process of the student evaluation of teaching
effectiveness?

2. How do you use the results from the student ratings of teaching (SRT)?

3. How useful are the data from the student evaluations to promote teacher
development?

4. To what degree do SRTs impact your decision regarding faculty retention, tenure,
and promotion decisions?

5. Do you personally review the evaluation data with each faculty or only with
selected faculty?

6. What method do you use to review the data?
 a. a personal review session
 b. a written review of the evaluation data
 c. return data to the teacher with a request that he/she review the data and
develop
 d. an action plan
 e. return data to the teacher with few comments

7. How often is the SRT form reviewed by your institution?

8. What is the extent of training the administrators have had in interpreting the data?

9. How could the process of using the SRT information at your institution be
 improved?
Interview Protocol—Faculty
Estimated interview time: 1 to 1 ½ hours per focus group session

Project: Evaluating Teacher Performance in Higher Education:
The Value of Student Ratings

Project Description: The significance of this study is to examine the perceptions that students, faculty, and administrators have of the student evaluation process and how the SRT data impact instruction and evaluation.

Questions:

1. What is your opinion of the process of the student evaluation of teaching effectiveness?

2. How do you use the results from the student ratings of teaching (SRT)?

3. How useful are the data from the student evaluations to promote teacher development?

4. To what degree do SRTs impact your instruction? Please explain.

5. Does your immediate supervisor personally review the evaluation data with you?

6. What method does your supervisor use in reviewing the data?
 a. a personal review session
 b. a written review of the evaluation data
 c. returns data with a request that you review the data and develop an action plan
 d. returns data to you with few comments

7. How effective is this method of reviewing the data?

8. If you had a personal review session or received written comments, what were the effects on your instruction?
 a. no effect on improving my teaching
 b. learned strategies to improve my student ratings
 c. learned strategies to improve my teaching effectiveness

9. How could the process of using the SRT information at your institution be improved?
Grading Faculty
A Student Survey of the Value of Student Ratings of Teaching
by Judy Campbell

Instructions: Each semester the College asks you to complete a formal written evaluation about each of your instructors. Thinking about that survey process, please circle one number for each of the following statements. The numbers range from 1 to 5. A score of 1 indicates that you strongly disagree with the statement while a score of 5 indicates that you strongly agree with the statement.

<table>
<thead>
<tr>
<th></th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neither Agree nor Disagree</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SD</td>
<td>D</td>
<td>NA/D</td>
<td>A</td>
<td>SA</td>
</tr>
</tbody>
</table>

BEGIN HERE

1. Students should complete formal evaluations of their instructors. 1 2 3 4 5
2. Students take the process of evaluating their instructors seriously. 1 2 3 4 5
3. Student surveys are a valuable method of evaluating instructors. 1 2 3 4 5
4. Students provide fair evaluations of their instructors. 1 2 3 4 5
5. Students know the qualities of an effective teacher. 1 2 3 4 5
6. Student evaluations are important to the college administrators. 1 2 3 4 5
7. Student evaluations are important to the instructor. 1 2 3 4 5
8. Professors care about the opinions of their students. 1 2 3 4 5
9. Professors use class evaluations to improve their teaching. 1 2 3 4 5
10. Administrators should inform professors about the results. 1 2 3 4 5
11. Professors change their grading system based on feedback from the evaluations. 1 2 3 4 5
12. Results from student evaluations are used to dismiss professors. 1 2 3 4 5
13. Results from student evaluations are used to promote professors. 1 2 3 4 5
14. Results from student evaluations influence faculty salary increases. 1 2 3 4 5
15. A summary of the results from the student evaluations should be available online for students to review. 1 2 3 4 5

Please continue on the back of this paper.
Instructions: Please mark the appropriate answer for each question below with an X.

CONTINUE HERE

16. What is your gender?
 - female
 - male

17. Which category describes your program of study?
 - associate of arts
 - associate of science
 - associate of applied science
 - vocational certificate
 - personal interest

Please answer the following questions on the line provided.

18. Approximately how many college credits (or semester hours) have you earned to-date? __________

19. What is your age? __________

Please write additional comments in the box provided below.

```

Thank you for participating in this survey.
Your responses will be used to promote teaching excellence.
```
Grading Faculty
A Faculty Survey of the Value of Student Ratings of Teaching
by Judy Campbell

Instructions: Each semester the College asks students to complete a formal written evaluation about each of their instructors. Thinking about that survey process, please circle one number for each of the following statements. The numbers range from 1 to 5. A score of 1 indicates that you strongly disagree with the statement while a score of 5 indicates that you strongly agree with the statement.

<table>
<thead>
<tr>
<th>Statement</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEGIN HERE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Students should complete formal evaluations of their instructors.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Students take the process of evaluating their instructors seriously.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Student surveys are a valuable method of evaluating instructors.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Students provide fair evaluation of their instructors.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Students know the qualities of an effective teacher.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Student evaluations are important to the college administrators.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Student evaluations are important to the instructor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Professors care about the opinions of their students.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Professors use class evaluations to improve their teaching.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Administrators should inform professors about the results.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Professors change their grading system based on feedback from the evaluations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Results from student evaluations are used to dismiss professors.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Results from student evaluations are used to promote professors.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Results from student evaluations influence faculty salary increases.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. A summary of the results from the student evaluations should be available online for students to review.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please continue on the back of this paper.
Instructions: Please mark the appropriate answer for each question below with an X.

CONTINUE HERE

16. What is your gender?
 - female
 - male

17. What is your faculty employment status with this College?
 - adjunct
 - full time

18. What is your faculty position?
 - non-tenured
 - tenured

19. What is your faculty rank?
 - instructor
 - assistant professor
 - associate professor
 - professor
 - senior professor

20. In what area do you primarily instruct?
 - college preparatory
 - associate of arts general education
 - associate of science/associate of applied science
 - vocational certificate
 - combination of the above

Please answer the following question on the line provided.

21. How many years have you been teaching in higher education? ___________

Please write additional comments in the box provided below.

Thank you for participating in this survey. Your responses will be used to promote teaching excellence.
APPENDIX H

INFORMED CONSENT – STUDENT GROUP
College Classroom Participant Verbal Consent

Hello. My name is Judy Campbell, and I am a graduate student at the University of Central Florida in the Department of Education. I am working on a research project supervised by faculty member Dr. William Bozeman. Our project is studying how students feel about evaluating teachers’ performance and how students believe this information is used. If you have previously completed a Student Evaluation of Instruction, I would like to ask you to participate in this survey that will take about ten minutes of your time.

Participation is anonymous. I will not ask for your name or identifying information. You do not have to answer any question you do not wish to answer, and you may discontinue participation or withdraw your data at any time without consequence. There is no anticipated risk or direct benefit to participants. Although I cannot compensate you for your time, your participation is greatly appreciated.

If you have any questions about the survey, you may contact Dr. Bozeman at (407) 823-1471. If you have any questions about research participants' rights, you may contact the University of Central Florida Institutional Review Board at (407) 823-2901.

If you have previously completed a Student Evaluation of Instruction survey and are willing to answer some questions for our research project, let’s begin.

Thank you for your willingness to participate.
Dear Community College Educator:

I am a graduate student at the University of Central Florida. As part of my research study, I am conducting a survey and interview of students, faculty, and administrators. The purpose of the study is to learn how students, faculty, and administrators feel about students evaluating teachers’ performance and how each group believes this information is used.

I am asking you to participate in this interview as a faculty member of Community College. The interview, which will last approximately 90 minutes, will be conducted in a small faculty focus group of approximately four to five representatives. The interview will be held in an area designated by your Faculty Senate president after I receive your letter of consent. For your review, the list of questions is enclosed with this letter. You will not have to answer any question you do not wish to answer. With the group’s permission, I would like to audiotape the interview. I will be the only person to have access to the tape, which I will personally transcribe. All identifiers will be eliminated during transcription. The tape will then be erased. Your identity will be kept confidential; it will not be revealed in the final manuscript. Immediately following the interview session, you will be asked to complete a brief survey.

There are no anticipated risks, compensation, or other direct benefits to you as a participant in this interview and survey. However, I will provide Community College a copy of the final research project. You are free to withdraw your consent to participate and may discontinue your participation in the interview and/or survey at any time without consequence.

If you have any questions about this research project, please contact me at (386) 506-4403 or by e-mail at campbeju@dbcc.edu. My faculty supervisor is Dr. William Bozeman. Questions or concerns about research participants' rights may be directed to the UCFIRB office, University of Central Florida Office of Research, Orlando Tech Center, 12443 Research Parkway, Suite 207, Orlando, FL 32826. The phone number is (407) 823-2901.

Please sign and return one copy of the letter in the enclosed envelope. A second copy is provided for your records. By signing this letter, you give me permission to report your responses anonymously in the final manuscript to be submitted to my faculty advisor as part of my research.

Sincerely,
Judith P. Campbell
Professor and English Language Institute/ESOL Chairperson

I have read the procedure described above for the faculty small group interview.
I voluntarily agree to participate in the interview and complete the survey.

__ /
Participant Date
APPENDIX J

INFORMED CONSENT – ADMINISTRATOR GROUP
Dear Community College Administrator:

I am a graduate student at the University of Central Florida. As part of my research study, I am conducting a survey and interview of students, faculty, and administrators. The purpose of the study is to learn how students, faculty, and administrators feel about students evaluating teachers’ performance and how each group believes this information is used.

I am asking you to participate in this interview as an administrator at Community College. The interview, which will last approximately 90 minutes, will be conducted in a small administrator focus group of approximately two to four representatives. The interview will be held in an area designated by your academic vice-president after I receive your letter of consent. For your review, the list of questions is enclosed with this letter. You will not have to answer any question you do not wish to answer. With the group’s permission, I would like to audiotape the interview. I will be the only person to have access to the tape, which I will personally transcribe. All identifiers will be eliminated during transcription. The tape will then be erased. Your identity will be kept confidential; it will not be revealed in the final manuscript.

There are no anticipated risks, compensation, or other direct benefits to you as a participant in this interview. However, I will provide Community College a copy of the final research project. You are free to withdraw your consent to participate and may discontinue your participation in the interview at any time without consequence.

If you have any questions about this research project, please contact me at (386) 506-4403 or by e-mail at cambeju@dbcc.edu. My faculty supervisor is Dr. William Bozeman. Questions or concerns about research participants’ rights may be directed to the UCFIRB office, University of Central Florida Office of Research, Orlando Tech Center, 12443 Research Parkway, Suite 207, Orlando, FL 32826. The phone number is (407) 823-2901.

Please sign and return one copy of the letter in the enclosed envelope. A second copy is provided for your records. By signing this letter, you give me permission to report your responses anonymously in the final manuscript to be submitted to my faculty advisor as part of my research study.

Sincerely,
Judith P. Campbell
Professor and English Language Institute/ESOL Chairperson
DBCC College of Arts and Sciences

I have read the procedure described above for the administrator small group interview.

I voluntarily agree to participate in the interview.

__________________________ /
Participant Date
MEMORANDUM

TO: Academic Vice President
FROM: Judy Campbell
RE: Dissertation Study

Purpose of the study: Learn how students, faculty, and administrators feel about students evaluating teachers’ performance and how each group believes this information is used.

Your assistance is needed to
- Arrange a date to visit.
- Identify classes for surveys to be administered (3-5 classes from different programs).
- Arrange the faculty small-group interview session.
- Arrange the administrator small-group interview session.

Student Group
- 40-80 students needed to complete the survey “Grading Faculty”
- The student group must come from sophomore level courses.
- I will administer the survey at a time convenient for the faculty member– less than 15 minutes is needed.
- I will read the informed consent “College Classroom Participant Verbal Consent” to the student group prior to administering the survey.

Faculty Group
- 4-5 volunteers representing the following categories: tenured, non-tenured, adjunct, Faculty Senate officer, faculty development representative
- Group interview session – 90 minutes using a set of 9 questions. Following the interview, participants will be asked to complete the “Grading Faculty” survey – estimated time 10 minutes
- The informed consent letter and questionnaire will be mailed to each volunteer prior to the campus visit. Please provide a list of participants with their campus addresses so that the informed consent and questionnaire can be mailed.

Administrator Group
- 2-4 volunteers from the ranks of academic vice-president, dean, and department chair
- Group interview session-90 minutes using a set of 9 questions
- The informed consent letter and questionnaire will be mailed prior to the campus visit. Please provide a list of participants with their campus addresses so that the informed consent and questionnaire can be mailed.

Thank you very much for your assistance.
APPENDIX L

INSTITUTIONAL REVIEW BOARD PERMISSION LETTER
October 27, 2004

Judith Campbell
6 Overbrook Court
Ormond Beach, FL 32174-3923

Dear Ms. Campbell:

With reference to your protocol entitled, “Evaluating Teacher Performance in Higher Education: The Value of Student Ratings,” I am enclosing for your records the approved, expedited document of the UCF IRB Form you had submitted to our office.

Please be advised that this approval is given for one year. Should there be any addendums or administrative changes to the already approved protocol, they must also be submitted to the Board. Changes should not be initiated until written IRB approval is received. Adverse events should be reported to the IRB as they occur. Further, should there be a need to extend this protocol, a renewal form must be submitted for approval at least one month prior to the anniversary date of the most recent approval and is the responsibility of the investigator (UCF).

Should you have any questions, please do not hesitate to call me at 407-823-2901.

Please accept our best wishes for the success of your endeavors.

Cordially,

Barbara Ward
Barbara Ward, CIM
IRB Coordinator

Copies: IRB office
William Bozeman, Ph.D., UCF at Daytona Beach, Educational Leadership, DI50, Room 305, 32166-0806
LIST OF REFERENCES

