INDUSTRIAL SLAVERY AT ARCADIA MILL: AN HISTORICAL AND
ARCHAEOLOGICAL INVESTIGATION

by

Rylan Nathaniel Thomas

B. A., Eastern Kentucky University, 2010

A thesis submitted to the Department of Anthropology
College of Arts, Social Sciences, and Humanities
The University of West Florida
In partial fulfillment of the requirements for the degree of
Master of Arts

2014
The thesis of Rylan Nathaniel Thomas is approved:

____________________________________________
Elizabeth D. Benchley, Ph.D., Committee Member          Date

____________________________________________
John C. Phillips, M.A., Committee Member                Date

____________________________________________
Amy Mitchell-Cook, Ph.D., Committee Member              Date

____________________________________________
Ramie A. Gougeon, Ph.D., Committee Chair               Date

Accepted for the Department/Division:

____________________________________________
John R. Bratten, Ph.D., Chair                          Date

Accepted for the University:

____________________________________________
Richard S. Podemski, Ph.D., Dean, Graduate School      Date
# TABLE OF CONTENTS

LIST OF TABLES ........................................................................................................................................ vii

LIST OF FIGURES .......................................................................................................................................... ix

ABSTRACT........................................................................................................................................................... x

CHAPTER I. INTRODUCTION ............................................................................................................................. 1

CHAPTER II. HISTORICAL CONTEXT .................................................................................................................. 7
   A. Industry in Antebellum West Florida ........................................................................................................ 7
   B. Slavery in West Florida .......................................................................................................................... 10
   C. A Brief History of Development at Arcadia ......................................................................................... 15

CHAPTER III. HISTORICAL RESEARCH ............................................................................................................. 22
   A. Research Methodology .......................................................................................................................... 22
   B. Historical Results .................................................................................................................................... 26
      1. 1828-1840 ........................................................................................................................................ 26
      2. 1845-1855 ........................................................................................................................................ 38
      3. Living Arrangements ......................................................................................................................... 44
      4. Work, Leisure, and Overwork ........................................................................................................... 48
      5. Medical Care ...................................................................................................................................... 48
      6. Food .................................................................................................................................................. 49
      7. Housing .............................................................................................................................................. 50
      8. Clothing .............................................................................................................................................. 51

CHAPTER IV. ARCHAEOLOGICAL METHODOLOGY ...................................................................................... 63
   A. Previous Archaeological Research ......................................................................................................... 63
   B. Field Methodology ................................................................................................................................ 66
   C. Laboratory Methodology ....................................................................................................................... 68
   D. Analytical Methodology ......................................................................................................................... 68

CHAPTER V. RESULTS ......................................................................................................................................... 73
   A. Introduction .......................................................................................................................................... 73
   B. Foodways .............................................................................................................................................. 73
      1. Procurement .................................................................................................................................... 74
      2. Preparation ..................................................................................................................................... 75
      3. Service .............................................................................................................................................. 76
      4. Storage .............................................................................................................................................. 83
      5. Remains .......................................................................................................................................... 85
C. Clothing...............................................................86
   1. Fasteners ...................................................86
   2. Footwear ...................................................97
   3. Maintenance and Manufacture .........................99
D. Household/Structural .........................................100
   1. Construction Material ..................................100
   2. Nails and Spikes .......................................102
   3. Window Glass ..........................................103
   4. Fittings and Hardware ................................104
   5. Furnishings and Accessories .........................105
E. Personal...........................................................106
   1. Medicinal ..................................................106
   2. Cosmetic .................................................107
   3. Decorative ..............................................108
   4. Recreational ............................................108
   5. Communication ........................................113
F. Labor.....................................................................113
   1. Stable and Barn .........................................114
   2. Tools ........................................................114
   3. Industrial ...............................................115
   4. Metalworking ..........................................118
G. Nonspecific ........................................................119
   1. Miscellaneous Hardware ...............................119
   2. Container ...............................................120
   3. Fuel .........................................................120
H. Unidentified .....................................................121

CHAPTER VI. DISCUSSION AND CONCLUSION ....................122
A. Discussion........................................................122
   1. Chronology ...............................................122
   2. Occupants and Ethnicity ..............................123
   3. Landscape ...............................................125
   4. Foodways ...............................................126
   5. Clothing ..................................................130
   6. Household/Structural .................................134
   7. Personal ..................................................135
   8. Labor ......................................................137
B. Conclusion ......................................................138

REFERENCES ................................................................143
APPENDIXES ........................................................................................................................................161
A. Copyright Permission, 1.............................................................................................................162
B. Copyright Permission, 2.............................................................................................................164
LIST OF TABLES

2.1. Combined U.S. Census Figures for Escambia and Santa Rosa Counties, 1830-1860 ................................................................. 12

2.2. Combined Percentage of Slave Ownership in Escambia and Santa Rosa Counties, 1830-1860 .................................................. 12

3.1. Clothing Articles by Price and Amount Sold at Auction .................. 53

3.2. Clothing Purchased at Auction by Three Largest Slave Owners and a Merchant ........................................................................... 55

5.1. Functional Categories by Count and Weight .................................. 73

5.2. Foodways Subcategories by Count and Weight ............................... 74

5.3. Food Procurement by Count and Weight ....................................... 74

5.4. Refined Earthenware Types by Count and Weight ......................... 76

5.5. Dates for Transfer Printed Pearlware and Whiteware by Color and Sherd Count ........................................................................ 78

5.6. Dates for Transfer Printed Pearlware and Whiteware by Border Type and Minimum Number of Vessels ........................................ 82

5.7. Glass Containers by Count and Weight ........................................ 84

5.8. Food Remains by Weight ............................................................. 85

5.9. Clothing Category by Count .......................................................... 86

5.10. Metal Buttons by Type, Material, Size, and Count ......................... 87

5.11. Prosser Buttons by Size and Count ............................................. 94

5.12. Household/Structural Subcategories by Count and Weight ............ 100

5.13. Construction Material by Count and Weight ................................ 101

5.14. Nails and Spikes by Count and Weight ......................................... 102

5.15. Distribution of Nails by Size and Function .................................. 103
5.16. Fittings and Hardware by Count and Weight .............................................104
5.17. Furnishings and Accessories by Count and Weight .................................105
5.18. Personal Category by Subcategory, Type, and Count .............................106
5.19. Recreational Subcategory by Count and Weight ..................................108
5.20. Labor Category by Count and Weight ....................................................113
5.21. Nonspecific Category by Count and Weight ........................................119
5.22. Unidentified Category by Count and Weight .......................................121
# LIST OF FIGURES

1.1. Location of Santa Rosa County, Florida .................................................................2

1.2. Project location in Santa Rosa County, Florida ....................................................3

3.1. Distribution of Arcadia Mill slave population by age and sex in 1850 .................42

3.2. Enlisted seaman in summer dress located behind officer ....................................57

3.3. Enlisted seaman in summer dress located behind officer ....................................59

3.4. Boatswain’s mate in winter dress ........................................................................61

4.1. Map of Arcadia Mill Archaeological Site .............................................................65

4.2. Area A site map showing excavation units, positive shovel tests, and soil resistivity results .................................................................67

5.1. Sample of transfer printed ceramics recovered from Area A .............................79

5.2. Similar “Legend of Montrose” plate with overlain sherds from Area A (Walthall 2013) .................................................................81

5.3. Assorted metal buttons .........................................................................................88

5.4. Matching anthropomorphic pipes from Five Points and Area A excavations, (Reckner and Dallal 2000:IX, plate 4, 24) .................................111

5.5. Assorted industrial artifacts from Area A matching those recovered from the second sawmill/textile mill excavations ........................................116
ABSTRACT

INDUSTRIAL SLAVERY AT ARCADIA MILL: AN HISTORICAL AND ARCHAEOLOGICAL INVESTIGATION

Rylan Nathaniel Thomas

Arcadia Mill was an antebellum industrial complex located in Santa Rosa County, Florida. As was common in West Florida, the owners utilized African American slaves as the mill’s primary labor force. During the summers from 2009 to 2011, archaeologists excavated a residential area which they suspected was occupied by part of the mill’s slave population. Utilizing a variety of archival sources, including slave manifests and purchase records, this thesis provides a new demographic history of the slave population and shows how the population changed shape as industrial production grew. Combined with historical records, the archaeological analysis provides a clearer understanding about who may have occupied the site and, as industrial slaves, what their material living conditions were like.
CHAPTER I
INTRODUCTION

During the summers from 2009 to 2011, archaeologists excavated an area at Arcadia Mill Archaeological Site which they suspected was the location of the mill’s African American slave quarters or another residential component of the site. Excavations revealed that the area, termed Area A, was domestic in nature. Unfortunately, archival sources were lacking and preliminary field and lab assessments were unable to identify the former occupants. The purpose of this study was to conduct primary historical research on Arcadia’s slave population and perform an analysis of the archaeological assemblage to assess whether or not Area A was occupied by part of the slave population. It was important to develop a detailed historical context in order to provide a foundation for interpreting the archaeological assemblage. This investigation provides information about the slave population and material living conditions that will be important for interpretation at Arcadia Mill.

Arcadia Mill Archaeological Site (8SR384) is located in northwest Florida near the city of Milton in Santa Rosa County (Figure 1.1 and 1.2). The mill complex was most active between 1828 and 1855, during which time the two main industries included a water-powered sawmill and later a water-powered cotton textile mill. Research began at Arcadia Mill in the late 1980s and early 1990s; however, it did not focus specifically on slavery at the site (Little et al. 1989; Rucker 1988, 1990; Phillips 1993). Brian Rucker’s doctoral dissertation, a comprehensive history of Santa Rosa County, provided a history of Arcadia Mill. However, a targeted investigation of the mill’s slave population was beyond the scope of his work. In addition to Rucker’s historical research, John C. Phillips and the University of West Florida Archaeology Institute conducted extensive archaeological investigations at Arcadia in 1991 and 1992, which
focused on the industrial components of the mill, including the dam, the sawmill and textile mill structures, and other industrial features (Phillips 1993).

FIGURE 1.1. Location of Santa Rosa County, Florida. Inset of Escambia County and Santa Rosa County. Courtesy of UWF Institute of Archaeology.
FIGURE 1.2. Project location in Santa Rosa County, Florida. Courtesy of UWF Institute of Archaeology.
Two decades later, UWF researchers under Phillips’ direction returned to Arcadia to investigate residential components of the site. In 2009, they conducted a systematic shovel test survey in the northern uplands area of the site and began excavating a residential area, termed Area A, which they suspected was occupied by African American slaves. Adrianne Sams’ master’s thesis compared several small domestic assemblages from across the site, including data from Area A, to delineate spatial distributions and produce a model for spatial organization at the site (Sams 2013:1, 83, 86). She observed that the lack of porcelain at Area A was indicative of a low status occupation, possibly African American slaves. Excavations continued at Area A in 2010 and 2011, which greatly increased the size and interpretive potential of the sample. This thesis is the first attempt at synthesizing and interpreting the data collected from 2009 to 2011.

African American archaeology, more recently termed African Diaspora archaeology, has been defined as “the study of material culture to describe and interpret the diverse experiences of African Americans and the social processes that affected their lives” (Singleton and Bograd 1999:1; Orser 1998). Most work on African American sites has taken place on former plantations (Singleton 1999:16-17). In the 1960s and 1970s, archaeologist Charles Fairbanks began the first systematic excavations of plantation slave sites in Coastal Georgia and Florida, which primarily focused on living conditions and identifying “Africanisms,” or African cultural survivals (Ascher and Fairbanks 1971; Fairbanks 1974). Drawing on Stanley South’s (1977) pattern concept, new directions in the 1980s focused on the identification of artifact patterns to address status differences and cultural change (Singleton 1980; Wheaton and Garrow 1985; Moore 1985). However, critics argued that the pattern concept was flawed because it provided a false image of cultures as static and ignored the complex social relations that existed within plantation society.
(Orser 1989). By the 1990s, many researchers were focusing on social relations, with particular emphasis on planter dominance and slave resistance, as well as race and class relationships. Studies of identity, race, class, and social engagement highlight much of the field today. Regardless of the particular perspective of these various approaches, most studies have at least provided insights into the material living conditions of slavery (Singleton 1999).

Previous research on African American slave sites is important for understanding the possibilities and limitations of identifying “ethnicity” and interpreting the assemblage at Area A. Beginning with John Otto’s seminal research at Cannon’s Point Plantation, which focused on identifying intra-site status patterns between slave, overseer, and planter assemblages, many early studies focused on identifying status differences in the material record (Otto 1975, 1977, 1984; Lewis and Hardesty 1979; Lewis and Haskell 1980; Adams and Boling 1989; Trinkley 1993). Researchers concluded that, while it is possible to identify economic status, it is not possible to define legal or imposed status (Fairbanks 1984:11; Lange and Handler 1985:16). Furthermore, specific cultural markers are rare and not considered reliable indicators of ethnicity (Singleton 1995:130-134; Brandon 2009:7). As an alternative, this study includes a textured analysis of historical and archaeological data to explore whether Area A was occupied by an African American population, or by white overseers or mill owners.

Chapter 2 provides a brief history of industry and industrial slavery in Antebellum West Florida, followed by a historical summary of Arcadia Mill. Chapter 3 is a description of historical research methodologies and the results of primary historical research. Historical results include a description of labor demands and demographics, as well as a description of slavery and historical information about material living conditions at Arcadia Mill. Chapter 4 includes a brief
description of previous archaeological research at Arcadia Mill, field methodology, laboratory methodology, and the analytical methodology employed for this study. Chapter 5 is a presentation of the material culture recovered during all three field seasons. Chapter 6 provides a discussion of historical and archaeological results as they relate to occupation of Area A by African American slaves, as well as a summary, conclusion, and recommendations for future research.
CHAPTER II
HISTORICAL CONTEXT

This chapter provides a brief history of industry and industrial slavery in Antebellum West Florida, followed by a summary of Arcadia Mill. In this thesis, West Florida refers to present day Escambia and Santa Rosa Counties, which are the two westernmost counties on the Florida panhandle.

**Industry in Antebellum West Florida**

During the Antebellum Period, the southern economy was based on commercial agricultural production. Short-staple cotton was the most important commercial crop in the South, which was grown from the Carolinas to Texas (Starobin 1970:3). Throughout the period, the South exported most of its cotton to the industrialized North for use in manufacture. As the South was poorly developed, it relied on the North for most of its manufactured products. Other important commercial crops included tobacco, grown in the Upper South, primarily in Virginia, Kentucky, and Missouri; hemp, in Kentucky; rice, along the eastern coast in South Carolina and Georgia; and sugar, cultivated in Louisiana (Starobin 1970:5).

The South included a small industrial sector as well. By the 1840s and 1850s, the South accounted for 20% of the capital invested in U.S. industry. From 1840 to 1860, southern manufactured goods increased from $34 million to nearly $100 million, respectively (Starobin 1970:11). A variety of industries existed in the South, including iron working, hemp manufacturing, mining, crop processing, turpentine extraction, lumbering, textile manufacturing, and many others. West Florida was an area that relied almost entirely on its industry for economic stability.
The Spanish ceded Florida to the United States by treaty in 1819 and Florida became an American Territory in 1821. In West Florida, industry and an influx of American settlers soon followed. Although West Florida was poorly suited for agriculture, it contained rich clay deposits and expansive longleaf pine forests. Furthermore, its strategic defensive position on the Gulf of Mexico attracted the U.S. Navy and Army. The economy of Antebellum West Florida was supported by military construction projects, the brick industry, and the timber industry.

Beginning in the 1820s, naval defense projects contributed to economic growth and stability in Escambia and Santa Rosa Counties by providing a steady demand for building supplies, provisions, and laborers (Polk 1971; Dibble 1974). Construction projects included the Pensacola Navy Yard (1826–1853), Fort Pickens (1829–1834), Fort McRee (1834–1839), Fort Barrancas (1839–1846), and the Advanced Redoubt (1845–1869). Although the positive economic effects were widespread, the brick industry benefited most from these building projects.

Construction of the Navy Yard officially began in 1826, during which time local brick makers competed with others in Mobile and elsewhere. In 1829, Captain William H. Chase of the Army Corps of Engineers was assigned to fort construction in Pensacola and announced that he would rely exclusively on brickmakers in the local area (Dibble 1974:31–33). As a result, brickmaking in Pensacola expanded greatly during this period. Some demand existed in the private sector. However, annual brick exports fluctuated heavily and rarely exceeded 500,000 bricks (Polk 1971:137). By comparison, Fort Pickens, Fort McRee, and Fort Barrancas required at least 19,000,000 bricks from 1829 to 1846 (Dibble 1974: 33–34, 43). After the completion of
Fort Barrancas in the mid-1840s, the local demand for bricks was greatly reduced and only a few brickmakers survived (Rucker 1990:148).

During the Antebellum Period, the timber industry in West Florida expanded greatly from its British and Spanish beginnings. West Florida was covered in virgin longleaf pine forests and there was constant outside demand for lumber. Between 1828 and 1834, the number of sawmills in the area increased from one to around twenty-five (Polk 1971:51). Most of the Antebellum sawmills were water-powered and were therefore located along creeks feeding into the Blackwater River or Escambia River (Phillips 1997:5). Timber was felled from both public and private land and transported to sawmills, where a variety of lumber products were manufactured. The sawmills at Arcadia, which operated from 1828 to 1840, were the largest of these American water-powered sawmills. In 1850, there were 27 sawmills in operation and only 2 employed more than 10 individuals. The two largest sawmills in 1850 included the Forsyth and Simpson firm and Criglar, Batchelder and Company (Polk 1971: 63). Both of these companies utilized steam power and employed over 100 individuals.

It should be noted that, while both counties benefited from the timber resources, most sawmill production occurred east of the Escambia River in what became Santa Rosa County in 1842. The towns of Milton and Bagdad were formed in the early 1840s and prospered as lumber profits grew. Many of the residents west of the Escambia River, and some to the east, were opposed to the formation of Santa Rosa County because it would reduce the size and economic strength of Escambia County (Rucker 1990:272-273). When Florida gained statehood in 1845, Santa Rosa County was the most industrialized county in the state and, by 1850, its industrial production was almost nine times greater than that of Escambia County (Rucker 1990:283, 399).
Pensacola’s port and commercial trade depended heavily on Santa Rosa’s sawmills and Santa Rosa County needed Pensacola’s deep and spacious harbor to transfer its timber products to larger seagoing vessels (Rucker 1990:595). Therefore, despite the industrial disparity, both counties remained closely associated politically and economically throughout the Antebellum Period.

Other businesses and professionals contributed to the economy as well. Professionals included a variety of shippers, merchants, auctioneers, lawyers, and government officials. Artisans included, but were not limited to, shipbuilders, sawyers, masons, tanners, cobblers, bakers, and blacksmiths (Polk 1971:105-112). In addition to the brick factories and sawmills, there were a variety of other, mostly smaller, manufacturing facilities. According to Polk, items being shipped out of Pensacola included “cowhides and animal peltry, beeswax, tallow, sugar, cigars, fish, iron castings, cloth, tobacco, pine tar, buckets, turpentine, cotton yard, and rice” (Polk 1971:112). While some were undoubtedly imported and reshipped, many of these items were produced in West Florida. Related facilities included two iron foundries, one each in Milton and Pensacola, bucket factories, tanneries, at least one pine tar operation, and a cotton textile mill (Pensacola Gazette 1837a; Polk 1971:113-114). Farmers in West Florida primarily grew sweet potatoes and corn, in addition to rice, Irish potatoes, peas, beans, oats, buckwheat, flax, and cotton on a smaller scale (Rucker 1990:506).

**Slavery in West Florida**

Instead of agriculture, most slaves in Antebellum West Florida were used for industrial purposes. The largest slaveholdings in the region were used for military construction, brickyards, and sawmills. The military construction projects leased large numbers of slaves to solve labor
shortages. In addition, the demand for building materials spurred development of a large brick and lumber industry, which also both utilized slave labor.

In 1850, the southern population was around 9.5 million, including 6.1 million free whites, 200,000 free blacks, and 3.2 million slaves (U.S. Bureau of the Census 1850d). Over half of the population was comprised of white yeoman farmers. These small land owning farmers tilled their own fields, usually without any help outside the family, and invested most of their time to raising crops for basic subsistence (Stampp 1956:29). Typical slave owners were farmers who owned one or two families and a few hundred acres of land (Starobin 1970:4). The planter class, who owned 20 or more slaves, only comprised about 12% of the population. However, they monopolized over half the slave population (Starobin 1970:5). Slaves raised almost all of the commercial crops in the South. Among the total slave population in 1850, 64% were involved in cotton, 12% in tobacco, 5% in sugar, and 4% in rice (Fogel 1989:30). Starobin (1970:11) estimated that in the 1850s, from 150,000 to 200,000 slaves, or roughly 5% of the total slave population worked in industry. Many of the large slaveholdings in West Florida were among the South’s 5% engaged in industry.

As a whole, most slaves in the South lived in rural areas, on plantations, and in many counties they outnumbered the free population. However, many of these heavy concentrations were located in specific agriculturally productive areas of the South. Outside of these plantation areas, population distributions varied, such as in West Florida. From 1830 to 1860, the number of slaves in West Florida never rose above 36% of the total population (see Table 2.1).
TABLE 2.1
COMBINED U.S. CENSUS FIGURES FOR ESCAMBIA AND SANTA ROSA COUNTIES, 1830-1860*

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Population</th>
<th>% Increase Total</th>
<th>Slave Population</th>
<th>% Increase Slaves</th>
<th>Slaves as % of Total</th>
<th>Number of Owners</th>
<th>% Increase Owners</th>
</tr>
</thead>
<tbody>
<tr>
<td>1830</td>
<td>3,368</td>
<td>n/a</td>
<td>1,225</td>
<td>n/a</td>
<td>36%</td>
<td>189</td>
<td>n/a</td>
</tr>
<tr>
<td>1840</td>
<td>3,993</td>
<td>18%</td>
<td>1,346</td>
<td>9%</td>
<td>34%</td>
<td>180</td>
<td>-5%</td>
</tr>
<tr>
<td>1850</td>
<td>7,214</td>
<td>81%</td>
<td>2,085</td>
<td>55%</td>
<td>29%</td>
<td>343</td>
<td>91%</td>
</tr>
<tr>
<td>1860</td>
<td>11,248</td>
<td>56%</td>
<td>3,321</td>
<td>59%</td>
<td>30%</td>
<td>392</td>
<td>14%</td>
</tr>
</tbody>
</table>

*Adapted from Handley (2005:71)

Although the plantation regions were characterized by a disproportionately high numbers of owners with large slaveholdings, planters were a much smaller proportion of the total southern population. According to Stampp (1956:30), “88% of the owners held less than [20 slaves], 72% held less than ten, and almost 50% held less than five.” Among slave owners in West Florida, 60-70% owned five or fewer slaves and only 6-9% owned 20 or more (see Table 2.2). Outside of the plantation regions, such proportions were more common. As the data show, slaveholdings in West Florida were proportionally similar to that of the total population in the South. As Stampp (1956:32) noted, the “complex pattern of slave distribution and ownership had an important bearing upon the lives of all Southerners and upon their relationship to the peculiar institution.”

TABLE 2.2
COMBINED PERCENTAGE OF SLAVE OWNERSHIP IN ESCAMBIA AND SANTA ROSA COUNTIES, 1830-1860*

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Owners</th>
<th>5 or fewer</th>
<th>% of Owners</th>
<th>20 or more</th>
<th>% of Owners</th>
<th>Total Population</th>
<th>Owners as % of population</th>
</tr>
</thead>
<tbody>
<tr>
<td>1830</td>
<td>189</td>
<td>127</td>
<td>67%</td>
<td>12</td>
<td>6%</td>
<td>3,368</td>
<td>5.6%</td>
</tr>
<tr>
<td>1840</td>
<td>180</td>
<td>121</td>
<td>67%</td>
<td>13</td>
<td>7%</td>
<td>3,993</td>
<td>4.5%</td>
</tr>
<tr>
<td>1850</td>
<td>343</td>
<td>232</td>
<td>68%</td>
<td>18</td>
<td>5%</td>
<td>7,214</td>
<td>4.8%</td>
</tr>
<tr>
<td>1860</td>
<td>392</td>
<td>236</td>
<td>60%</td>
<td>36</td>
<td>9%</td>
<td>11,248</td>
<td>3.9%</td>
</tr>
</tbody>
</table>

*Adapted from Handley (2005:74)
The small slaveholders in West Florida used their slaves for a variety of purposes, including for agriculture, domestic work, and hiring out, among others. The following section focuses on the larger slaveholders in West Florida, who were those responsible for the region’s economic base, including military construction projects, brickyards, and sawmills. In West Florida, they were the economic and political elite. Socioeconomically, these individuals would be considered part of the South’s planter class.

As was common on the Gulf Coast, slave labor was used in Pensacola to construct the Pensacola Navy Yard, as well as Fort Pickets, Fort McRea, Fort Barrancas, and the Advanced Redoubt (Starobin 1970; Dibble 1974, 1977; Handley 2005; Hulse 2010). When Captain Lewis Warrington was assigned as Commandant of the Pensacola Navy Yard in 1826, he could not find skilled or unskilled labor in sparsely populated West Florida, white or black (Dibble 1977:103-104). He eventually hired 70 or 80 slave laborers from an owner in Tallahassee. In a letter to Washington, Warrington recommended a reliance on slave labor “as they suit this climate better, are less liable to change, more easily controlled, more temperate, and will actually do more work” (Navy Yard of Pensacola 1826). In 1826, Warrington began renting slaves for all unskilled labor; a practice which persisted until the Civil War (Hulse 2010:511). Skilled slaves were soon added to the labor force, including assistants to white masons, joiners, and bricklayers, among others (Dibble 1977:104).

In 1827, the second Commandant, Captain M.T. Woolsey, began systematizing slave hiring based on precedents set in Mobile, Alabama. In general, the leases were gentlemen’s agreements which lasted for extended periods of time and stipulated details about pay, food, housing, and medical care (Hulse 2010:506-507). Generally, leasers provided their slaves with at
least food and housing. Woolsey also systematized the control of slave labor through daily inspection of slave quarters, confinement after dark, and orders to shoot those that did not signal their presence after 8 PM (Dibble 1977:105). According to Dibble (1977:107), approximately 200 slaves worked at the Navy Yard each year throughout the 1840s and 1850s.

Similarly, the Army Corps of Engineers in Pensacola employed slave labor in the construction of all fortifications. In 1829, Captain William H. Chase of the Army Corps of Engineers was assigned from projects in New Orleans to fort construction in Pensacola. Chase contracted directly with the engineering firm Underhill and Strong, previously of New Orleans, for the construction of Fort Pickens and all subsequent building projects. Underhill and Strong owned a large labor force of skilled slaves, which enabled the Army to avoid labor shortages. For example, in 1830, Jasper Strong owned 111 slaves (U.S. Bureau of the Census 1830). In addition, Chase hired unskilled slaves and placed them under the control of Strong.

The military construction projects played a crucial role in West Florida’s economic development, particularly because they created demand for building materials and attracted a variety of wealthy businessmen and West Point graduates into the area, including William Chase, Jasper Strong, Byrd Willis, George Willis, Jackson Morton, and John Hunt, among many others. These individuals were involved in almost every prosperous venture in West Florida. Aside from government construction, brick making, and lumbering, they were also involved in establishing economic stability through banking and transportation. These individuals were also responsible for the growth and maintenance of industrial slavery in the area.

In 1832, Byrd Willis emigrated from Fredericksburg, Virginia, to Pensacola to assume the role of Navy Agent at the Navy Yard. During this time, he used his position to ensure that his
slaves and those of his son, George Willis, were hired by the Navy Yard (Handley 2005:61-62). This arrangement continued throughout the Antebellum Period. George Willis, who arrived around the time of his father, was engaged in the brick and lumber industry. John Hunt arrived from Huntsville, North Carolina, around 1830 and soon constructed his brickyard on the Blackwater Bay (Handley 2005:68). Hunt’s slave property grew from 34 in 1830 to 71 in 1840, most of whom labored at his brickyard. Jackson Morton also arrived around 1830 and operated a large brickyard and sawmill on the Blackwater River. Morton’s slave property included 118 slaves in 1830 and 78 in 1840. In 1841, Morton became Navy Agent and, similar to Willis, ensured that many of his slaves labored at the Navy Yard (Handley 2005:69-70). Besides Strong, Willis, Hunt, and Morton, there were a variety of other large slaveholders. Among them included Joseph Forsyth and Ezekiel Simpson, the owners of Arcadia Mill.

A Brief History of Development at Arcadia

Arcadia was the first antebellum water-powered industrial complex in Florida and at various points included sawmills, a grist mill, blacksmith’s shop, and a cotton textile mill. The following section is adapted from Rucker 1990, Phillips 1993, and Mabelitini and Phillips 2012 and provides a condensed history of Arcadia from 1817 through the Civil War. Information about labor is reserved for the following chapter.

The land that Arcadia Mill was located on was granted originally to the prominent Pensacola businessman and politician Juan de la Rua in 1817 (Rucker 1990:165–168). This Spanish land grant included 800 arpents, or around 667 acres of land. La Rua’s purpose for acquiring the property was to make improvements and construct a sawmill. Although he is reported to have cleared the land and made improvements, the extent of development is unclear.
La Rua’s preoccupation with politics and the brick industry appear to have hindered progress at the site. In 1828, la Rua sold the property to an ambitious young businessman named Joseph Forsyth for $400 (Rucker 1990:165–168).

Joseph Forsyth was born in New London, Connecticut, in 1802 and raised in New Orleans and Pensacola. After several years as a merchant and middleman, Forsyth purchased the Pond Creek property with the intention of constructing a sawmill. Within the first year, he raised nearly $4,000 by supplying the Pensacola Wharf Company with quarried sandstone from Arcadia (Rucker 1990:171). By 1830, Forsyth had partnered with brothers Ezekiel and Andrew Simpson, who had experience in sawmilling, and began constructing a dam and sawmill. The Pensacola Gazette reported on 12 December 1829 that “a saw mill on a more extensive scale than has hitherto been in operation, in this neighborhood, is now constructing on Black Water by Messrs. Forsyth and others” (Pensacola Gazette 1829). In late 1830, Forsyth sold the northeast corner of the la Rua tract to Timothy Twitchell, former county judge and auctioneer, for $121 and split ownership of the remaining property with Ezekiel and Andrew for $2,500 (Rucker 1990:172, 218, 330). Twitchell dammed a small creek and built a sawmill on his part of the land.

At Arcadia, a 1,400 foot long, 15 foot high dam of earth and sandstone was constructed that impounded a 60 acre mill pond (Phillips 1993:186). One water-powered sawmill was a two story structure located at the base of the dam, while a second sawmill was later built about 350 feet downstream from the dam. A 600 foot long mill race was constructed to carry water from the mill pond to the second mill. A flume was also constructed to connect Twitchell’s mill with the mill pond at Arcadia (Phillips 1993:188-193).
The sawmill operation at Arcadia continued to grow and diversify throughout the 1830s. In 1833, Forsyth and the Simpson brothers liquidated a substantial amount of property, probably to increase capital for Arcadia (Rucker 1990:187). In 1835, the property was described as “…about five hundred acres of land, with a good dwelling house and out houses, a saw mill with two runs of saws, a grist mill, flour mill, blacksmith’s shop, tools, and implements of all sorts” (Pensacola Gazette 1835). Forsyth and Ezekiel added a planing and lathing machine the following year and advertised planed flooring, tongued and grooved ceiling, and jointed weather boards (Rucker 1990:187). The operation is described in 1837 as “a saw mill running a gang of saws, two single saws, two planning machines and a circular saw, while the same stream carries in another mill, two single saws, a grist mill, lathing machine, and other works all in operation” (Pensacola Gazette 1837b). As indicated, a second mill structure and a circular saw had been added. In 1838, Arcadia Mill advertised that it could “furnish bills of lumber entire for building, including frame, planed lumber for finishing and shingles for roof; also shortly, lathe” (Pensacola Gazette 1838). In addition to the diversity of products offered, production also increased over time. Shipping records indicated that the mill produced over 250,000 board ft. of lumber per year by 1835 and production had increased to at least 900,000 board ft. per year by the end of the decade (Rucker 1990:188).

Despite their overall success, Forsyth and Simpson experienced considerable difficulty transporting their products from Arcadia Mill to the Blackwater River. Around 1835, Joseph Forsyth, Ezekiel Simpson, and Timothy Twitchell began a canal project that would have connected Pond Creek to the Blackwater River (Rucker 1990:191-192). However, the canal project was abandoned by 1838 and they shifted their attention to building a small railroad with
mule drawn railroad cars (Rucker 1990:192-193). When the railroad was finished, it connected Arcadia Mill to the lumber drying yards at the confluence of Pond Creek with the Blackwater River. Although, the railroad did not prove satisfactory. Around 1840, the Forsyth and Simpson Company moved the lumber operation to Bagdad, which was located three miles east at the confluence of Pond Creek and Blackwater River, and utilized steam engines to power the mill. The Bagdad sawmill proved immensely profitable for Forsyth and Simpson (Rucker 1990:324-327).

According to Rucker, the mill facilities at Arcadia were abandoned in 1840 and Timothy Twitchell was the only individual conducting industrial activity in the vicinity (Rucker 1990:329). Twitchell had built a small sawmill by 1833 and added a shingle mill in 1836. By the end of the 1830s, his mills had shipped out over 150,000 board ft. of lumber and over 50,000 shingles (Rucker 1990:331). In 1841, Twitchell built the Arcadia Pail Factory, a 30 foot square building with an adjoining blacksmith’s shop. The factory produced over 1,000 buckets per year. He also unsuccessfully experimented with silk culture by planting mulberry trees and building a cocoonery (Rucker 1990:332).

A cotton textile mill operated at Arcadia from 1846 through 1855. The Escambia Manufacturing Company was incorporated in 1835 and included Joseph Forsyth, Andrew Simpson, Ezekiel Simpson, George Willis, and Henry Ahrens (Rucker 1990:191-192). The stated purpose of the corporation was the “manufacture of cotton, wool, and other materials, into thread, yarn, or cloth, or other manufactures of like character, and the building and erection of works and machinery necessary to carry on operations of such manufactory” (Rucker 1990:191). Forsyth intended to use Arcadia as the location of the textile mill. According to Rucker, the plans
were delayed by the financial Panic of 1837, the failure of the Alabama, Florida, & Georgia Railroad, and the relocation of the sawmill operation from Arcadia to Bagdad (Rucker 1990:334).

Though less frequent than in the industrialized North, textile mills were not uncommon in the South. Many Southerners were discontent that Southern cotton was shipped to New England mills and the finished products were sold back to the South at much higher prices. Proponents of Southern textile production advocated textile ventures as a means of economic autonomy. It is possible that Forsyth and his partners were prompted to move forward with their plan when cotton prices fell in 1845 (Rucker 1990:334).

Work began on the Arcadia textile mill in the fall of 1845 and operations began the following year. The name was officially changed to the Arcadia Manufacturing Company and the stock subscribers included Joseph Forsyth, Ezekiel Simpson, Henry Hyer, George Willis, Henry Ahrens, and William A. Jones. The Board of Directors included Forsyth, Hyer, and Willis, with Forsyth as president. The textile mill was constructed in the location of the second sawmill and included a two-story building, 94 x 38 ft., which housed the textile equipment (Rucker 1990:334-335). Ezekiel Simpson was the only known stockholder with a residence at Arcadia during this period, which included a large dwelling located in the southern uplands (Sams 2013:44).

In April 1846, the textile mill was in full operation and by the following month cloth was being shipped to New Orleans (Rucker 1990:335). The textile mill operated 960 spindles and 24 looms during its first year and produced from 4,000 to 5,000 yards of coarse cotton cloth per week. The approximate amount of cloth produced per week increased to 6,000 yards in 1848,
9,000 yards in 1849, and over 12,000 yards in 1850 (Rucker 1990:338-339). Despite the growth, the Arcadia Manufacturing Company showed a rate of return of only five percent in 1850 and, from 1846 to 1852, the company had a deficit of nearly $8,000 (Rucker 1990:416).

According to Rucker, the Arcadia Manufacturing Company failed for a variety of external and internal reasons. In the South, the market was saturated with coarse cotton textile products, for which there was limited demand. In addition, Southern textile mills had difficulty entering markets outside the South (Rucker 1990:416-420). Arcadia’s demise was also caused by the failure to secure a railroad, heavy investment in slave labor, and delinquent stockholders. The textile mill continued production through 1855. However, Joseph Forsyth fell ill and, at the age of 53, died on 10 March 1855. Two months later, the textile factory was destroyed by a fire. The property was offered for sale in March 1856 and was described as 510 acres “together with all the improvements thereon, comprising Dwelling Houses, Store House, Negro Quarters, Kitchen, &c., and a valuable water privilege” (Pensacola Gazette 1856). It is unclear how much activity occurred at Arcadia between its closing and the Civil War.

There was intermittent activity at Arcadia during the Civil War. In March 1862, Confederate troops executed a burn order in which they destroyed mills, factories, lumber, and boats from Pensacola to Milton in order to prevent resources from falling into enemy control. It is possible that the Arcadia dam was breached by Confederates at this time to prevent Union forces from using the mill (Phillips 1993:38-39, 194; Mabelitini and Phillips 2012:10). A bridge across Pond Creek was burned by November of 1862. Also in November, several Union soldiers plundered structures at Arcadia and were ambushed on the road by a Confederate scouting party. In March 1863, Union forces under command of Colonel Ferris launched an expedition of 100
troops to Arcadia after receiving information of Confederate activity there. After arriving, they took refuge in a large unoccupied house on the outskirts of the village. A small force of Confederate cavalry had been using the house as an outpost and Ferris found a number of sabers, carbines, and other equipment. An advance scout of five Confederates spoiled the plan to capture the entire company. Of the five troops, three were captured, one was killed, and another escaped (Mabelitini and Phillips 2012:10-12). In August 1864, Union troops passed through Arcadia on their way to Milton from Mulatto Bayou. The troops are reported to have rebuilt the burned bridge before proceeding to Milton. No other activity is recorded at Arcadia for the remainder of the war (Mabelitini and Phillips 2012:13).
CHAPTER III
HISTORICAL RESEARCH

Research Methodology

There were two main research objectives for the historical portion of this project. The first objective included identifying information on slave demographics and addressing how the population at Arcadia changed over time, particularly as it related to industrial growth and change. The second objective included identifying and interpreting documentary evidence of material living conditions and access to resources. A variety of primary sources were used to address these objectives.

Archival research was conducted at the UWF Archives and West Florida History Center located at the University of West Florida John C. Pace Library, Pensacola, FL; Escambia County Public Records in Pensacola, FL; Pensacola Historical Society Resource Center, Pensacola, FL; New Orleans Notarial Archives, New Orleans, LA; and the National Archives and Records Administration, Washington, DC. Other archival material was accessed through Interlibrary Loan and Ancestry.com®. Relevant primary documents included census records, newspaper articles, purchase records, slave manifests, probate records, shipping manifests, auction records, and first-person accounts of Arcadia Mill.

For the 1828-1860 period, one of the most descriptive sources for demographic information came from primary documents associated with the slave trade, including purchase records and slave manifests. Participation in the selling and purchasing of slaves existed on the local and interstate level. In West Florida, the local market typically consisted of smaller slave sales and larger transactions usually occurred at the interstate level. When owners with larger
slave holdings, such as Jasper Strong, John Hunt, Jackson Morton, or Joseph Forsyth, needed to acquire slave laborers, they turned to out-of-state markets and sales (New Orleans Notarial Act 1828a, 1828b, 1829a, 1829b, 1829c, 1829d, 1829e; Hunt 1833a, 1833b, 1833c, 1833d; Morton 1838; Pensacola Gazette 1845b).

Prohibition of the African slave trade after 1807 and the explosion of cotton agriculture in the Lower South led to an expansion of the native-born slave population and the domestic slave trade (Bancroft 1931:67; Fogel 1989:33). As southern planters expanded southwest, the demand for slaves created one of the largest forced migrations in world history. While some brought slaves with them, most of the migration was the result of the interregional slave trade (Deyle 2005:43-44). The interregional trade was comprised of slave-exporting states, located in the Upper South, and slave-importing states, located in the Lower South (Deyle 2005:44-46). According to historian Walter Johnson (1999:7), “slaves were gathered in Baltimore, Washington, Richmond, Norfolk, Nashville, and St. Louis and sent south, either overland in chains, by sailing ships around the coast, or by steamboats down the Mississippi. These slaves were sold in the urban markets of Charleston, Savannah, Mobile, Natchez, and especially New Orleans.” Most of the slaves at Arcadia Mill were victims of the trade.

During the Antebellum Period, New Orleans was the largest slave market in North America, and it was the closest slave market for buyers from West Florida. Most of the large slaveholders in West Florida were also connected to the Crescent City through business or family. However, New Orleans slave prices were higher than those in the Upper South. Therefore, West Florida buyers sometimes travelled north to purchase slaves, particularly if they
were acquiring a large number of slaves (Hunt 1833a, 1833b, 1833c, 1833d; Morton 1838; 
*Pensacola Gazette* 1845b).

Purchase records were the most direct source of information on slave sales in Pensacola 
and New Orleans. All of the records examined for this study included the names of the seller and 
buyer, the type and quantity of property being transferred, price, and the date. Additional 
information sometimes included names, ages, and information about where and when the seller 
purchased the slaves originally. Where the seller purchased the slaves also provided links to the 
interstate slave trade and origins. Purchase records were identified for Joseph Forsyth, Ezekiel 
Simpson, and Andrew Simpson.

Slave manifests also provided information about the slave population and slave 
acquisition patterns. The law that banned the trans-Atlantic slave trade in 1807 included new 
regulations for the domestic trade. One of these regulations required that the captains of inward 
and outward bound vessels provide a slave manifest if the vessel was carrying human cargo. 
Information on these documents included the name of the shipping vessel, its homeport, cargo 
weight, the captain’s name, outward port, and inward port. Slaves were described under the 
following categories: name, sex, age, stature, class, shippers/owners, and residence of the 
shippers/owners. Slave manifests were identified for Joseph Forsyth and Ezekiel Simpson.

James Forsyth and James Forsyth Jr., Joseph’s father and younger brother, were 
commercial shippers who transported products between Pensacola and New Orleans, including 
many shipments from Arcadia Mill. In addition to lumber, bricks, and other products, James and 
James Jr. were two of the largest shippers of slaves in and out of Pensacola (Thomas 2012). Not 
surprisingly, they sometimes shipped slaves from New Orleans to Pensacola for Joseph. It should
also be noted that Andrew Simpson had moved to New Orleans in the mid-1830s and opened a lumberyard. On at least two occasions, Andrew acted as Joseph Forsyth’s agent in New Orleans slave sales.

For the 1845-1855 period, the main sources of information about Arcadia’s slave population included descriptions in the *Pensacola Gazette*, Joseph Forsyth’s probate records, and a limited number of visitor’s accounts. As there was considerable local excitement about the textile mill, the *Pensacola Gazette* included several accounts of the mill, including brief descriptions of the slave population. When Joseph Forsyth died in 1855, Ezekiel Simpson became the executor of his will and included a ledger of slaves, including names, disabilities, and appraised values, along with a variety of other information. The names of individuals listed on the 1855 ledger were matched with those on the slave manifests and purchase records from the 1830s, which indicated additional information about longevity, health, marriages, etc. In addition, brief descriptions of the textile mill population were presented in *De Bow’s Review* (1847), *Minutes of Southern Travel* (Keyser 1848), and a memoir by Anna Dorr ([1900]).

Among the accounts of Arcadia’s textile mill, the memoir written by Dorr provided the most contextual information about material living conditions. Anna Worcester Dorr was born in Pensacola in 1834 and was the niece of Ezekiel Simpson through his marriage to Dorr’s mother’s sister, Sophia S. Allen. Ezekiel Simpson married Sophia in the summer of 1840 and the marriage lasted until spring of 1847, when Sophia passed away (Sams 2013:50). Although no exact date was specified, the memoir dated to at least the 1890s, as she referenced her mother’s death in 1887 (Dorr [1900]:29). The memoir covers a variety of topics related to her family’s history and experience in West Florida prior to the war. While it was written in a romantic style, many of the
names, places, and events discussed were factual. The brief two paragraphs devoted to Arcadia Mill contained information related to work, medical care, subsistence, and overwork, among other topics. The fragments of information contained within the Dorr memoir and other primary sources were combined and interpreted to create the historical context of Arcadia Mill.

**Historical Results**

**1828-1840**

The following discussion provides a general history of labor acquisition at Arcadia Mill from 1828 through 1840. It is separated into two general periods, one from about June 1828 to June 1836 and another from about November 1836 to 1840. These periods differed in the number of slaves used and by the scale of production at the mill. In total, this study identified at least 33 male and 7 female slaves acquired by Arcadia owners between 1827 and 1839. These figures are consistent with the 1840 census data, which indicated that the total number of slaves owned between Forsyth and Simpson was 39 males and 7 females. In addition, the slave acquisitions correspond closely with growth and production. The slave population included laborers who worked in and around the mill facilities. It is unclear whether the slave population was also utilized for cutting timber or if the owners purchased timber from contract loggers.

Labor demands between 1828 and 1836 were influenced by a large quarrying project, major construction, and the operation of a multifunctional industrial facility. The Arcadia property was purchased in June 1828. A sandstone quarrying project began shortly thereafter and may have continued into the following year (Rucker 1990:168). Construction of the massive dam and two story sawmill took place as early as December 1829 and production began at the sawmill as early as 1830 (Pensacola Gazette 1829). In 1833, the owners raised a significant amount of capital, presumably for mill improvements (Pensacola Gazette 1833a, 1833b; Rucker
By 1835, the mill was producing over 250,000 board ft. of lumber per year (Rucker 1990:187). In May 1835, the property included a dwelling house, a sawmill with two runs of saws, a grist mill, flour mill, and a blacksmith’s shop (Pensacola Gazette 1835).

It was determined that, from November 1827 through June 1836, the Arcadia owners had acquired or owned at least 16 male and 6 female slaves and sold 2 male and 2 female slaves. Forsyth and the Simpson brothers were not included in the 1830 census, making it difficult to determine the exact number of slaves that labored at the mill during its earliest years. To estimate the number of slaves at the mill, a variety of other primary documents were used. One exceptional record was a mortgage from 1836.

In June 1836, Joseph Forsyth and E.E. Simpson mortgaged the entire Arcadia property, including ten male slaves, to Jasper Strong (Escambia County Deed Book C 1836:475). Nine of the slaves were listed by name, including Andrew, Harman, Zeb, Allen, Daniel, Simon, Charles, Peter, and Dick. The mortgage record confirmed that, prior to June 1836, Forsyth and Simpson owned at least 10 male slaves that labored at the mill. It is not known when the 10 slaves were acquired. However, nearly twenty years later, six of these individuals were included in Joseph Forsyth’s 1855 probate ledger by name and age (Forsyth Papers 1855). Based on the 1855 ledger, their ages were calculated for the year 1836 as follows: Allen, 36; Andrew, 40; Daniel, 31; Zeb, 29; Dick, 26; and Harman, 26 years. By 1855, Dick was rheumatic and Harman was badly herniated.

From 1829 to 1833, Andrew Simpson purchased two slaves and sold four slaves in Escambia County. In November 1829, he purchased two male slaves named Jack and Brancy, ages 24 and 11, for $775 from James Larkin of Pike County, Alabama (Escambia County Deed
Book B 1829:200). In October 1833, Andrew Simpson sold four slaves to his brothers and sisters, excluding Ezekiel (Escambia County Deed Book B 1833b:513). The slaves included two males, named Ben and George, and two females, named Ann and Liela. The record of sale did not specify the age of these slaves. Andrew’s early investment at Arcadia suggested that the two male slaves may have labored at the mill prior to their sale. In 1834, Andrew married Adelia Forsyth, Joseph’s younger sister (Rucker 1990:188). By 1838, he and Adelia had relocated to New Orleans, where he owned and operated a lumber yard (Taylor 1992). The slaves Jack and Brancy probably relocated to New Orleans with him. Andrew and Adelia continued to purchase slaves in New Orleans, presumably for the lumber yard and for personal use (New Orleans Notarial Act 1838, 1839b, 1841, 1843, 1849, 1850).

In January 1833, Joseph Forsyth purchased six slaves from Thomas Cooper of Pensacola, which included five females and one male (Escambia County Deed Book B 1833a:434). Cooper had originally purchased the slaves Flora, Hester, Harriet, and Dice from a sheriff’s auction in Edgefield District, South Carolina, and he purchased the slaves Mary Ann and Annica on credit from Ephraim Cook of Pensacola. None of their ages were specified in the document. The 1855 ledger indicated that, in 1833, the slaves Flora and Harriet would have been 58 and 6 years of age, respectively. Furthermore, Harriet is identified as deaf and dumb. Based on age and price, the slaves Flora, Hester, Harriet, and Dice may represent a mother and her children. Forsyth paid $750 for these four slaves. In 1833, a single prime age male slave purchased in New Orleans cost between around $800 and $1,000 (Evans 1962:225; Kotlikoff 1979:498-500). Female slaves often cost 20% less than males, indicating that the average price for female slaves in New Orleans in 1833 was between $640 and $800 (Phillips 1918:370-371; Evans 1962: 225).
Therefore, the $740 paid for the four slaves in 1833 indicated that they were not prime age slaves, defined as 10 to 30 years of age, and were likely either old, young, or disabled. For Mary Ann and Annica, Forsyth paid $820, plus interest, to Cook to satisfy Cooper’s debt. Additional information was not specified. It is possible that Mary Ann and Annica were also mother and child.

Four slaves were shipped to Joseph Forsyth from 1827 to 1835. These shipments presumably were the result of interstate slave sales. However, no purchase records were identified. In November 1827, James Forsyth, Joseph’s father, shipped a male slave named Aaron, age 26, from New Orleans to Pensacola (Slave Manifest 1827). The slave Aaron is listed in the 1855 ledger at the age of 58 and described as “lame” (Forsyth Papers 1855:219-220). In August 1834, Joseph shipped a male slave named Jackson, age 26, and a female slave named Patsey, age 16, from Mobile to Pensacola (Slave Manifest 1834). Lastly, in March 1835, James Forsyth shipped a male slave named Isaac, age 20, from New Orleans to Pensacola (Slave Manifest 1835). The slave Isaac was listed in the 1855 ledger at the age of 39 (Forsyth Papers 1855:219-220).

The demand for labor at Arcadia increased from 1836 to 1840 as Forsyth and Simpson expanded the mill’s industrial capabilities and further increased production. The company added planing and lathing machines between May 1835 and May 1836 (Pensacola Gazette 1835, 1836). In June 1836, Forsyth and Simpson mortgaged the Arcadia property, presumably to increase capital for the mill (Escambia County Deed Book C 1836:475). By April 1837, the first sawmill included a gang of saws, two single saws, two planing machines, and a circular saw and the company had built a second mill downstream that included two single saws, a lathing
machine, and a grist mill (Pensacola Gazette 1837b). In February 1838, the mill advertised that it could provide all lumber necessary for building construction, including framing lumber, planed lumber, lathes, and shingles (Pensacola Gazette 1838). Also in 1838, the owners, along with Timothy Twitchell, began construction of a small railroad that connected Arcadia Mill to the lumber beds at the Blackwater River, three miles away (Rucker 1990:191-193). By 1840, the mill had increased production to at least 900,000 ft. of lumber per year (Rucker 1990:188).

According to the 1840 census, Joseph Forsyth’s household included 4 free males, 34 male slaves, and 5 female slaves (U.S. Bureau of the Census 1840). Among Forsyth’s household, 36 individuals were involved in manufacturing. Ezekiel Simpson’s household included 4 free males, 5 male slaves, and 2 female slaves. Among Simpson’s household, 9 individuals were involved in manufacturing (U.S. Bureau of the Census 1840). According to the 1840 census, the total number of slaves owned between Forsyth and Simpson had increased to 39 males and 7 females. Andrew Simpson had relocated to New Orleans by 1838 and does not appear in the 1840 census. As indicated above, Forsyth and the Simpson brothers may have owned at least 16 male and 6 female slaves in June 1836. Purchase records and inward slave manifests indicated that between November 1836 and January 1839, Joseph Forsyth and Ezekiel Simpson acquired an additional 17 male slaves and 1 female slave.

This study identified three inward slave manifests associated with Arcadia for the 1836-1840 period. On 17 November 1836, Andrew Simpson shipped 10 male slaves from New Orleans to Joseph Forsyth in Pensacola (Slave Manifest 1836b). Their names were Ellis, Caleb, Moses[1], Joe, Albert, Peter, Joe Haynes, Joe Ballard, Ned Hopkins, and Moses[2]. The slave Peter was 11 years of age and the remaining nine slaves were between the ages of 18 and 26.
Seven days earlier, the same 10 slaves arrived in New Orleans onboard the Schooner *Hunter* travelling from Norfolk, Virginia (Slave Manifest 1836a). The *Hunter*’s human cargo included 88 slaves shipped by a variety of owners. The Arcadia slaves were shipped by a William Foster of Norfolk to the wealthy Jewish merchant Judah Touro of New Orleans (Hühner 1946). As Forsyth’s agent, A.P. Simpson acquired these slaves and shipped them to Pensacola onboard the Brig *Halcyon* of New York. No sale of slave record was identified among the notarial acts in New Orleans. However, notary offices occasionally burned and there are gaps in the records. Among the slaves shipped in November 1836, Joe Ballard, Ned Hopkins, Caleb, and one of the individuals named Moses are listed on the 1855 ledger.

An additional three slaves were shipped in 1838. In January, Ezekiel Simpson shipped a male slave named George Henry, age 20, from New Orleans to Pensacola and, in May, James Forsyth shipped one male slave named George, age 26, and one female slave named Jenny, age 11, from New Orleans to Pensacola (Slave Manifest 1838a, 1838b). The slaves George and Jenny were listed in the 1855 ledger at 44 and 26 years of age, respectively (Forsyth Papers 1855:219-220).

One purchase record was identified for the 1836-1840 period. On 4 January 1839, Joseph Forsyth, represented by Andrew Simpson, purchased five male slaves from Theophilus Freeman in New Orleans for $6,000 (New Orleans Notarial Act 1839a). The slaves included Greensbury Thomas, age 20, Charles Fields, age 20, John Bird, age 20, Andrew Williams, age 24, and Henry Ambrose, age 21. Theophilus Freeman was a slave trader who owned a large pen in New Orleans during the 1830s and 1840s (Northup 1855:75-90; Bancroft 1931:26, 57, 314; Johnson 1999:47,
Soloman Northup’s memoir *12 Years a Slave* describes Freeman and his slave pen (Northup 1855:75-88).

According to the act of sale, the five slaves purchased in New Orleans on 4 January 1839 had been in Freeman’s pen since November 1838 (New Orleans Notarial Act 1839a). On 12 November, the slave Charles Fields arrived in New Orleans onboard the vessel *Lark* travelling from Richmond, Virginia (Slave Manifest 1838c). The *Lark’s* human cargo included 162 slaves, including 97 belonging to Freeman. Freeman’s slaves, including Charles Fields, were shipped by William Goodwin of Richmond, Virginia. Details regarding the origins of the other four slaves was unclear. However, on 18 September 1839, James Forsyth shipped one of the slaves, Henry Ambrose, from New Orleans to Pensacola (Slave Manifest 1839). No manifests were identified for the other slaves and it is not clear when they were transported to Pensacola. The slaves Greensbury Thomas, Charles Fields, John Bird, and Andrew Williams were listed in the 1855 ledger (Forsyth Papers 1855:219-220).

Price data suggest that the slaves purchased in 1839 were skilled carpenters or sawyers. Just before the Financial Panic of 1837, the average price of prime age male slaves in New Orleans peaked at around $1,200 (Kotlikoff 1979:498-500). By 1839, the average price had fallen to around $825. In January 1839, Forsyth paid $6,000 for the five male slaves in New Orleans, or $1,200 per slave. Forsyth paid a premium of $375, or 45%, compared with the average price of a prime age male slave in 1839. Such a high price is significant when compared to the average cost of skilled slaves in the New Orleans slave market. According to historical economist Robert Fogel, compared with the average cost of a prime age field hand or laborer, carpenters cost a premium of about 45% and blacksmiths about 55% (Fogel 1989:68). Given that
Forsyth purchased these slaves specifically for work at his sawmill, the 45% premium suggests that they were skilled carpenters or sawyers.

Forsyth and the Simpson brothers may have also hired slaves to labor at the mill. Slave hiring was not as formalized as slave sales and it does not appear as frequently in the historical record. However, hiring may have occurred frequently. One example of slave hiring during the 1830s comes from a letter written by Jackson Morton to John Hunt on 15 September 1833 (Morton 1833). The last part of the letter stated “I had a fellow’s foot very severely mashed the other day at Simpson’s Mill. If you have a late paper on[or?] any nurse[?] send it over[?]” The “fellow” was likely one of Morton’s slaves leased to Forsyth and Simpson. Jackson Morton owned 118 slaves in 1830 and is known to have hired out his slaves (Handley 2005:69).

Depending on the agreement, the slave owner or the individual hiring the slave was required to provide medical treatment (Dibble 1974:61-62). Another example appears in the 1853 lawsuit Forsyth and Simpson v. Perry, in which Joseph Forsyth and Ezekiel Simpson hired a slave from George Perry to work on board their steamboat (Forsyth and Simpson v. Perry 1853). At the misconduct of the ship’s mate, the slave subsequently drowned. Though not during the 1830s, the latter case provides an additional example of slave hiring among the owners. As outlined earlier, the practice of hiring slaves for industrial purposes was very common in West Florida. It is logical that the owners would want, or even need, to hire slaves during periodic increases in production.

The extent to which whites were employed at the mill from 1828 to 1840 is not clear. There is little doubt that Ezekiel Simpson was involved in the daily operations at the mill in the beginning. Furthermore, it is likely that at least a white overseer and a sawyer were also
employed at the mill (Brian R. Rucker 2014, per. comm.). While the slaves probably held a variety of unskilled, semi-skilled, and skilled positions, they too could have held management related positions, as it was not unusual for industrial slaves to hold positions of skill and power (Moore 1967:28; Starobin 1970:105-109; Genovese 1974:388-398). No documentary evidence was identified that suggested white laborers were used at Arcadia Mill. Although historian Brian Rucker has stated that the mill employed both black and white laborers, his cited sources did not reveal evidence of white labor at the mill (Escambia County Deed Book B 1833a:434; Morton 1833; Overman 1939:16; Moore 1967:27; Rucker 1990:175, 219). Some southern industries, including the lumber industry, employed both whites and slaves together (Starobin 1970:137-145). However, during the last 30 years of the Antebellum period, Southern lumber manufacturers preferred to operate their sawmills using slave labor (Moore 1967:27). Based on the data, Forsyth and Simpson employed slaves as their primary labor force and several whites were likely used to oversee operations.

Data collected from purchase records, slave manifests, and the slave ledger also provided insight into the age, height, and skin color of slaves at Arcadia. For age, data showed that Forsyth and Simpson acquired prime age slaves to work at the sawmill and were less selective among the female slaves, who were probably domestics. Historical economists have defined “prime aged slaves” as those from 10 to 30 years of age (Pritchett and Freudenberger 1992:109-127). These slaves were preferred in the market, as they provided the greatest net earnings for slave owners (Fogel and Engerman 1974:71-77). Similarly, historian Walter Johnson (1999:138) defined most “prime age” slaves as those between the ages of 15 and 25. Skilled slaves, however, reached maturity around the age of 35.
Based on data available for 26 slaves, 22 males and 4 females, the average age of slaves when they were acquired was 21 years, the youngest slave acquired was 6 and the oldest was 58. Among the 22 male slaves, the average age when acquired was 21; the youngest slave was 11 and the oldest was 26. The four females were 6, 11, 16, and 58 years of age when they were acquired. As noted, Forsyth and Simpson acquired all prime age male slaves. Two of the four female slaves were not prime working age, which was reflected in their purchase price as well.

Information on slave ages was compared to the 1840 census data for Joseph Forsyth and Ezekiel Simpson. Andrew Simpson’s two slaves were excluded from the sample. Combined, Forsyth and Ezekiel Simpson owned 39 male and 7 female slaves (U.S. Bureau of the Census 1840). This study accounted for 30 male and 7 female slaves. However, age was only available for 26 males and 4 females. Available ages were adjusted to the year 1840 and compared to the census data. The slave data collected during this study was very similar to the 1840 census data by age and sex. As noted, a majority of the slaves were males in their prime working years. Several adolescents listed in the census were not accounted for in this study, which indicated they may have been born under Forsyth’s ownership during the 1830s. During the latter 1836-1840 period, 16 of the 17 slaves acquired were between 10 and 23 years of age, which indicates that Forsyth and Simpson had a preference for purchasing prime age male slaves to work at the sawmill. Not surprisingly, the eight oldest male slaves in 1840 were those that labored at the mill during the earlier 1828-1836 period.

Information on height was compiled from slave manifests and compared to a larger dataset on slave’s heights compiled by historical economists Pritchett and Freudenberger (1992:112-114). Results showed that, out of 16 male slaves between the ages of 17 and 26, the
average height was 66.1 in., the shortest slave was 60 in. in height and the tallest was 69.9 in. in height. Based on New Orleans slave manifests, Pritchett and Freudenberger (1992:113) determined that slave heights were variable for male slaves under the age of 25 and that not all slaves may have attained their full stature until 25. They determined that the average attained height for male slaves from 25 to 49 years of age was 67.1 in. Compared to the average height for slaves 25 to 49 years of age, the average for the 16 slaves at Arcadia was one inch shorter, at 66.1 in. Compared to data for individual age groups, i.e. 17, 18, 19, etc., 10 of 16 slaves in this dataset were below average for their particular age.

Information on skin color was also compiled and analyzed. The data were derived from slave manifests and purchase records and included the terms black, negro, griff, mulatto, and yellow. These terms were ascribed to slaves by whites based on a racialized spectrum of darker to lighter color that they associated with biology and suitability to certain types of labor. Generally, darker slaves were preferred as laborers and lighter skinned slaves were preferred for skilled and domestic work (Johnson 1999:138-139). However, they were not exclusive. The “black” and “negro” classes were the darkest skin colors and “mulatto” and “yellow” were the lightest skin colors. The “griff” class was defined as the offspring of a “negro” and a “mulatto” (Johnson 1999:150-153; 256).

Skin color was only available for 23 slaves, including 21 males and 2 females. Among the 23 slaves, 74% were categorized as either “black” or “negro,” 9% were categorized as “griff,” and 17% were categorized as either “mulatto” or “yellow.” Among the 21 males, 81% were categorized as “black” or “negro” (n=17), 5% were categorized as “griff” (n=1), and 14% were categorized as “mulatto” or “yellow” (n=3). The slave Greensbury Thomas was the only
male categorized as “griff.” The youngest male slave, Albert, was categorized as “mulatto.” Neither female was categorized as “black” or “negro.” Patsey and Jenny were categorized as “griff” and “mulatto,” respectively.

Although it is difficult to interpret intentionality and function based on skin color, slave owners did prefer lighter skinned slaves for domestic work. Therefore, it is possible that Patsey and Jenny served as domestic slaves. Furthermore, the slave Flora was 58 when she was acquired in 1833, indicating that she served a similar role. If they were not domestics, it is possible that they performed other ancillary duties associated with the mill, such as cooking, washing clothes, and sewing for the male slaves.

In 1840, the lumber operation relocated three miles east of Arcadia to the confluence of Pond Creek and the Blackwater River, and the town of Bagdad was established. The male slaves from Arcadia relocated to the new Bagdad mill and labored there throughout the 1840s and 1850s. In addition to slave labor, Forsyth and Simpson recruited skilled white laborers from the North to work at the new sawmill and sash factory in Bagdad (Rucker 1990:328; Overman 1939). The 1850 manufacturing schedules indicated that 111 males labored for Forsyth and Simpson at the Bagdad mills (U.S. Bureau of the Census 1850c). Among those, as many as 65 were slaves (U.S. Bureau of the Census 1850b). It is not clear exactly when operations ended at Arcadia Mill in 1840. According to Rucker (1990:329), the mill facilities were abandoned and Twitchell was the only individual conducting industrial activity in the vicinity. There is little evidence to suggest otherwise.
1845-1855

The following section is a general history of labor acquisition at Arcadia Mill from 1845 to 1855, when the textile mill was active. In total, the proprietors of the textile mill acquired from 60 to 70 female slaves and as many as 15 male slaves between 1845 and 1850. In addition, there were up to 28 other slaves that lived at Arcadia, who were personally owned. The mill also employed one to four overseers. Compared to the lumber mill, labor at the textile mill is well documented. The novelty and local excitement for the new industry prompted a variety of articles in the *Pensacola Gazette*, some of which included descriptions of the labor force (*Pensacola Gazette* 1845a, 1845b, 1845c, 1846a, 1846b, 1846c, 1848, 1849, 1855, 1856). The textile mill was also described briefly in an issue of *De Bow’s Review* and two additional primary accounts were written that discussed the mill and its laborers (*De Bow’s Review* 1847; Keyser 1848; Dorr [1900]).

Between 1846 and 1855, laborers were needed at the textile mill for a variety of tasks, which included, among others, operating carding machines, spinning frames, and power looms (Phillips 1993:55-58). There was probably also a need for laborers who could maintain the mill and its machinery, as well as package and transport the products to the Blackwater River. In addition, overseers were needed to supervise the laborers. In 1845, the two story factory was built and machinery and slaves were purchased (*Pensacola Gazette* 1845a, 1845b, 1845c). Production began as early as April 1846 (*Pensacola Gazette* 1846a). During its first year, the textile mill operated 960 spindles and 24 looms and produced from 4,000 to 5,000 yards of cloth per week (*Pensacola Gazette* 1846b, 1846c). In 1848, the number of looms doubled and the factory was producing from 6,000 to 7,000 yards of cloth per week (*Pensacola Gazette* 1848).
Production continued to increase, from 9,000 yards per week in 1849 to over 12,000 yards per week in 1850 (Rucker 1990:338-339).

The mill employed at least two or three white overseers between 1845 and 1855. According to *De Bow’s Review* in October 1847, the textile mill employed two or three white overseers from the North (*De Bow’s Review* 1847). It is possible that two of these overseers were the Dennison sisters from New York (Overman 1939:16). Both sisters died in the yellow fever epidemic in 1853 (Rucker 1990:362). Similarly, a northern visitor stated in 1848 that “there were three northern foremen and one southern man” and that the foremen had worked previously in northern mills (Keyser 1848). There is no mention of the sisters in the 1850 census. William W. Harrison, who had previously been Santa Rosa County sheriff, was employed as overseer at the textile mill from January 1848 to January 1852 (Escambia County Circuit Court Records 1853; Rucker 1990:362;). Harrison is listed in the 1850 census as superintendent and his household included his wife Ann and four children (U.S. Bureau of the Census 1850a). He is also listed owning four male and two female slaves (U.S. Bureau of the Census 1850b). It is unclear who supervised the textile mill during its last year or more of operation.

At least two major slave acquisitions occurred from 1845 to 1850, one in 1845 and another around 1848. In September 1845, it was announced that the textile machinery had been ordered and that “one of the gentlemen concerned in the enterprise” was on his way to Virginia to purchase slaves (*Pensacola Gazette* 1845b). George Willis was probably the proprietor tasked with acquiring the new slaves, as he was a native of Orange County, Virginia, and a major slave owner in Pensacola (U.S. Bureau of the Census 1840, 1850b; Willis 1909). While in Virginia, Willis purchased around 40 female slaves between the ages of 15 and 20 (*Pensacola Gazette* 1845b).
During that time, the largest slave markets in Virginia included Richmond, Norfolk, and Alexandria (Bancroft 1931:88-119). In addition, Willis could have visited sheriff’s auctions and estate sales. According to De Bow’s Review, the 40 slaves were “selected, with care… and probably at an average cost of about $400” (De Bow’s Review 1847).

It was cheaper to purchase the Arcadia slaves in Virginia. Virginia was a slave-exporting state and slave traders controlled prices based on how much they could sell slaves for in New Orleans (Deyle 2005:45-46). Therefore, slave prices were lower in Virginia than in New Orleans. If Willis paid $400 per slave in Virginia, then the 40 slaves cost the Arcadia Manufacturing Company $16,000. The average price of prime male slaves in New Orleans in 1845 was around $650 and female slaves were generally priced between 10%-20% less than males (Kotlikoff 1979:498; Phillips 1918:370-371). If the average prime age female slave cost $520 in New Orleans in 1845, then 40 slaves would have cost the company $20,800. By eliminating the New Orleans slave trader and travelling directly to the source, the company paid $4,800, or 23%, less than it would have in New Orleans.

In August 1846, the Pensacola Gazette reported that the mill had “40 operatives, all black girls from 15 to 20 years and are all mostly married” (Pensacola Gazette 1846b). The following year, De Bow’s Review (1847) reported that the mill included “thirty-three or thirty-four young colored girls [and] six or seven colored boys.” Additional slaves were added sometime around 1848. In September 1848, a northern visitor named John Keyser (1848) reported that around 60 slaves labored at the textile mill. In March 1849, the Pensacola Gazette published a letter by a Milton, Florida resident which indicated that around 100 slaves labored at the textile mill (Pensacola Gazette 1849). The slaves acquired around 1848 were not identified by age or sex.
Census records from 1850 suggest that both males and additional females were purchased in the 1848 acquisitions. No acts of sale were identified in New Orleans for the 1845-1855 period.

One slave was identified among the Escambia County deed records for the 1845-1855 period at Arcadia. In August 1848, Ferdinand Christin of Pensacola sold a male slave named Antonio Pefanio to the Arcadia Manufacturing Company for $400, with the agreement that Antonio would earn $15 per month for his services and the company would set him free upon receiving $400 (Escambia County Deed Book I 1848:442). The agreement also stipulated that during his time at Arcadia, he would be “furnished with such subsistence as given to other slaves.” Antonio signed the agreement with an “x” as his mark. In June 1853, the manumission papers were signed and Antonio was released from any future claims on the $400 (Escambia County Deed Book L 1853:151). The manumission document also specified that Antonio was “a mulatto man of about 55 years old.”

According to the 1850 Manufacturing Schedule, there were 95 laborers at Arcadia Mill, including 28 males and 67 females (U.S. Bureau of the Census 1850c). Similarly, the 1850 slave schedules indicated that the Arcadia Manufacturing Company owned 82 slaves, including 67 females and 15 males (U.S. Bureau of the Census 1850b). These slaves belonged to the corporate stock of the Arcadia Manufacturing Company (Escambia County Circuit Court Records 1853). In addition to slaves owned by the company, some of the slaves employed in the factory belonged to individual stockholders (Escambia County Circuit Court Records 1853). Based on location, the 1850 slave schedules indicated there were 28 slaves associated with the mill that belonged to individuals. These included 21 slaves owned by Joseph Forsyth, 6 slaves owned by William Harrison, and 1 slave owned by Henry Ahrens. Including the 82 slaves owned by the
company and the 28 slaves owned by individuals, there were 110 slaves associated with Arcadia Mill. Among the 110 slaves, there were 79 female and 31 male slaves. The distribution of the slave population at Arcadia Mill by age and sex is presented in Figure 3.1.

![Age distribution of Arcadia Mill slaves, ca. 1850](image)

**FIGURE 3.1.** Distribution of Arcadia Mill slave population by age and sex in 1850.

The slave population was disrupted as the company declined from 1853 to 1856. In 1853, George Willis took his share of the company slaves and moved to Orange County, Virginia (Willis 1909; Rucker 1990:417, 444). Willis probably departed Arcadia with 10 to 20 slaves, based on the percentage of the company he owned. In 1855, Joseph Forsyth died, the mill structure was destroyed by fire, and many of the textile slaves were sold at auction and private sales. On 11 August 1855, the *Pensacola Gazette* advertised the sale of Forsyth’s share of the factory slaves (*Pensacola Gazette* 1855). The slaves included 25, mostly female slaves from 17 to 23 years of age. The advertisement also stated, “thirty to forty other slaves of like description will be also offered if not previously disposed of at private sale.” The advertisement was
reprinted in the *Mobile Advertiser, New Orleans Picayune, Columbus Sentinel*, and the *Montgomery Journal*. The auction was held at Arcadia on 2 October 1855.

Slaves sold at the Arcadia auction were purchased for a comparatively low amount, as overall slave prices appreciated greatly during the 1850s (Deyle 2005:56-60). According to Forsyth’s probate ledger, 24 of the 25 advertised slaves were sold at the auction to various unnamed persons (Forsyth Papers 1855). It is uncertain who purchased the remaining 30 to 40 Arcadia slaves, and whether they were sold at private sale or at the auction. Forsyth’s 24 slaves were sold for $12,651.34. If each slave was valued equally, the price paid per slave was approximately $527. Comparatively, the average price for prime age female slaves in New Orleans was approximately $880 in 1855 (Evans 1962:225; Kotlikoff 1979:498). The Arcadia slaves sold for 40% less than a prime age female slave in the New Orleans market. It is possible that their experience as semi-skilled slaves was not valued, as the use for such skills was limited in the Southern economy. If they were not viewed as suitable for work in the field, such experience may also have decreased their values. It is also possible that the low prices were simply the result of expediency and circumstance of the estate sale.

Excluding his share in the company owned slaves, Forsyth personally owned 59 slaves at the time of his death, including 47 males and 12 females (Forsyth Papers 1855). Similarly, the 1850 slave schedules indicated that Joseph Forsyth owned 60 slaves, including 50 males and 10 females (U.S. Bureau of the Census 1850b). Among those, 21 were associated with Arcadia and 39 were associated with the sawmill operation at Bagdad. Forsyth’s will indicated that a slave named Eliza and three of her children were freed and eventually sent to New York (Forsyth Papers 1855; Rucker 1990:446). The remaining 55 slaves were appraised and described briefly
by name and age. Among those, at least 20 were slaves purchased during the lumber mill years. Cordelia Forsyth, Joseph’s young wife, took 13 of the appraised slaves, including 7 males and 6 females (Forsyth Papers 1855). She subsequently married and moved to San Antonio, Texas, in 1857 (Rucker 1990:445). There is information in the ledger indicating that some of Cordelia’s slaves were sold at the October auction. However, it is difficult to determine. The slave named John Byrd, who was originally purchased in New Orleans in 1839, died on 1 April 1856 (New Orleans Notarial Act 1839a; Forsyth Papers 1862). The outcome for the remaining 39 male and 6 female slaves is unknown. Many of them had worked previously at the mills in Bagdad and probably remained there under the ownership of Ezekiel Simpson or the newly renamed Simpson and Company.

**Living Arrangements**

Based on the demographic information presented above, it is likely that slaves at Arcadia were housed in both single family and same-sex living arrangements. Household structures at Arcadia also likely differed between the 1828-1840 period and the 1845-1855 period. Due to the disproportionate sex ratio at Arcadia, living arrangements differed from those on typical plantations. Historians Fogel and Engerman (1974:115-116) determined there were 5.2 slaves per house on large plantations and typically only one family per structure. On very large plantations, they also observed that dormitories were used for unmarried men and women (Fogel and Engerman 1974:115). Sex-specific dormitories have been observed in a variety of other studies as well (Stampp 1956:292; Kelso 1984:28-29, 122-123, 200-201; Brown and Cooper 1990; Samford 1996:92; Vlach 1993; Morgan 1998:104-145). Based on the population data
presented above, a variety of single family, all male, and all female households existed at Arcadia between 1828 and 1855.

From 1828 to 1840, most of the slave population at Arcadia was comprised of male slaves who lived in all male households and there may have been a limited number of single family households as well. The female slaves identified in the historical record may have been domestic servants who lived closer to the Forsyth and Simpson residences. On plantations, slaves were often housed close to their work places to decrease transportation time (Orser and Nekola 1985). If industrial facilities followed a similar principle, the slave laborers would have been quartered near the first sawmill and additional structures may have been built near the second sawmill during the latter half of the decade. The 1840 census indicated that at least three adolescents were owned by Forsyth. Therefore, a limited number of single family households may have existed as well.

From 1845 to 1855, living arrangements included many female specific households, a nursery that may have also served as a household, and multiple single family households. At its height, the population at Arcadia was comprised of at least 110 slaves, including 79 females and 31 males. Among the 110 slaves, 98 individuals were above 9 years of age. It was reported that no “very small children” worked in the mill (Keyser 1848). The 1850 slave schedule indicates that five isolated groups of slaves were present in the immediate area (U.S. Bureau of the Census 1850b).

The first group in the 1850 slave schedule represented a nursery that was described in historical accounts. The entry included 23 slaves owned by the Arcadia Manufacturing Company, including 5 infants, 1 male 3 years of age, 1 female 8 years of age, 14 females
between 10 and 15 years of age, and 1 female 30 years of age (U.S. Bureau of the Census 1850b). Dorr ([1900]:17) described the nursery, stating that it was the place where “all babies were left under the care of several old women, the mothers going at stated times to nurse the little ones.” The nursery is also mentioned in the Simpson family’s history of the mill, whose version implied that a level of social hierarchy existed among the domestic, nursery, and textile mill slaves (Simpson [1930]:35, 44-45). Most large plantations had nurseries that were supervised by one or more older women who were assisted by older children (Fogel and Engerman 1974:206-207). The textile mill laborers would have dropped their children off in the morning and picked them up in the evening, with nursing mothers returning three to four times a day to nurse.

Directly following the nursery on the 1850 slave schedule was a single male slave, age 23, owned by Henry Ahrens. Following Ahrens slave, there was a group of two slaves owned by Forsyth, including 1 male 50 years of age and 1 female 35 years of age (U.S. Bureau of the Census 1850b). The nursery slaves, Ahrens slave, and the two slaves owned by Forsyth were separated spatially from the main Arcadia population. They were recorded on a separate day and several unidentified slave owners separated them in the slave schedule from the main group, indicating that these slaves lived geographically somewhere other than directly by the main population.

The main Arcadia population appeared on the 1850 slave schedule in three consecutive groups. The first group was comprised of six slaves owned by the superintendent William Harrison. His slaves included four males and two females (U.S. Bureau of the Census 1850b). The second group was comprised of 19 slaves owned by Joseph Forsyth, many of whom were
represented five years later on the probate ledger. This group included 5 young children; 3 children 10-12 years of age; 1 female 14 years of age; 4 males 25-55 years of age; and 6 females 25-45 years of age. This group represented at least 12 individuals listed on the 1855 ledger, including three families (Forsyth Papers 1855). These slaves included Ann, William, and their two children; Nelly, Daniel, and their two children; Jenny, her two children, and grandchild; and Harriet. Daniel is one of the individuals who labored at Arcadia during the early 1828-1836 period (Escambia County Deed Book B 1833a). It is possible that William and the other older male were also veterans of the old lumber mill. Harriet, who is listed as “deaf and dumb” on the ledger, matched a female of similar age who was listed as “deaf and dumb” on the 1840 and 1850 census (U.S. Bureau of the Census 1840, 1850b). Out of 110 slaves at Arcadia, this group also included the three oldest males, 45, 45, and 55 years of age, and three oldest females, 35, 45, and 45 years of age. The remaining seven individuals on the census probably match others on the ledger. However, it is not possible to discern exactly who they were.

Directly following Forsyth’s slaves, the third and largest group included 59 slaves owned by the Arcadia Manufacturing Company (U.S. Bureau of the Census 1850b). This group included 49 female slaves between the ages of 12 and 35 and 10 male slaves between the ages of 10 and 30. Again, assuming that slaves were housed near their work places, many of these 59 slaves would have been quartered together near the textile mill. Many of the females were probably quartered together in single sex households and it is likely that several family households existed as well.
Work, Leisure, and Overwork

According to historian Robert Starobin, most industrial slaves worked 6 days a week, 12 hours a day, from sunrise to sunset (Starobin 1970:37). Similarly, primary records show that the Arcadia textile mill slaves labored Monday through Saturday, 12 to 13 hours a day, including a break for lunch (Keyser 1848; Dorr [1900]:17). The sawmill slaves may have maintained a similar work schedule. Free time for slaves typically included evenings, Sundays, and up to a week of holidays (Starobin 1970:37; Fogel and Engerman 1974:208). Throughout the Antebellum South, it was common practice for masters to pay their slaves for work performed during their free time (Genovese 1974:312-315). According to the Dorr memoir, Ezekiel Simpson paid his slaves for cutting the firewood they used if it was cut during their free time. The owners also purchased chickens and vegetables raised by their slaves (Dorr [1900]:17). It was not unusual for slaves to earn substantial amounts of money for services performed on Sundays (Genovese 1974:314). Dorr stated that, among the slaves at Arcadia, “many men saved up and bought a cow or a horse; women bought finery” ([1900]:17).

Medical Care

Slave owners typically provided medical care, housing, food, and clothing for their slaves. Medical care was a necessary part of owning slaves and it was in the financial interest of owners to see that their slaves were in good health. According to Dorr, during the textile mill years “there was a hospital, and a doctor who lived nearby was retained on a salary to look after the physical welfare of the hands” ([1900]:17). By 1850, there were two physicians and one druggist in Santa Rosa County (U.S. Bureau of the Census 1850a). Medical care was undoubtedly important to the success of the sawmill as well. Much of the work performed by the
sawmill slaves was physically demanding and dangerous. For example, a slave working at the
mill in 1833 was described as having his foot “very severely smashed” and in need of treatment
(Morton 1833). In 1855, male slaves that had worked at the Arcadia and Bagdad sawmills were
described as cripple, lame, rheumatic, asthmatic, and badly herniated (Forsyth Papers 1855).
Medical care may have also been necessary for pregnant women, children, and the elderly.

Food

Food was both provided by owners and acquired by the slaves at Arcadia, at least during
the textile mill years. According to Dorr ([1900]:17), each house during the 1840s and 1850s had
a small yard and garden spot and slaves raised chickens and vegetables. Other research indicated
that it was common for slaves on plantations to have their own poultry house and vegetable
gardens behind their houses (Phillips 1918:267). Dorr ([1900]:17) also claimed that “from twelve
to one was the dinner hour. There was a room and a cook for every twelve hands. Rations served
out every Saturday were given to the cook, who was held responsible for the meals.” Plantation
owners viewed common kitchens as the most economical and healthy practice for feeding their
slaves and it was typical for them to distribute food on the weekends, as slaves invested
additional effort in food preparation on Sundays (Genovese 1974:344). After visiting Arcadia in
1848, John Keyser (1848) claimed that northern wage laborers ate better food than the textile
mill slaves at Arcadia. However, he stated that northern wage laborers “often suffered for food”
during periods of unemployment. No information is available regarding food for the sawmill
slaves. The self-interest of slave owners often protected slaves from inadequate food
provisioning. According to Starobin (1970:50), most industrial slaves lived on a subsistence

49
level, being provided only what was adequate. Other researchers have concluded that most slaves received more than adequate levels of nutrients (Fogel and Engerman 1974).

**Housing**

A variety of all male, all female, and family households existed over time at Arcadia. Unfortunately, information about the size and construction of the quarters they lived in is lacking in the historical record. Slave quarters in the Antebellum South included log, frame, stone, and brick construction and layouts included single-pen, double-pen, hall-and-parlor, and saddlebag styles, among others (Vlach 1993:153-169). The former slave George Lewis indicated that some structures in the Pensacola area were of log construction (Lewis 1936). Another source indicated that Jasper Strong constructed barracks for his slaves working on fort construction (Dibble 1974:63). However, construction type was not specified.

The slave quarters at Arcadia may have been of frame construction. A photograph taken at Arcadia in the southern uplands near the Simpson’s residence shows a structure which may have housed the female supervisors for the textile mill or Ezekiel Simpson’s domestic slaves (Cochran 2013:112-115). The structure was a clapboard-covered duplex of frame construction. It also had a two-sided fireplace, a covered porch, and sat on four L-shaped corner piers constructed of brick. Excavations revealed that the structure would have been approximately 27 x 30 ft., excluding the porch. For slaves, such two-unit structures were typically built to accommodate two families, one on each side (Vlach 1993:159). During the Antebellum Period, plank-covered frame houses were viewed as healthier and more comfortable for slaves compared to log cabins (Vlach 1993:157). It is possible that the slave structures which housed the laborers
at Arcadia were of frame construction. In addition, the lumber was readily available for building such structures.

**Clothing**

Joseph Forsyth’s probate inventory indicated that clothing was dispersed to his slaves in the spring and fall (Forsyth Papers 1855). The seasonal distribution of clothing usually included a lighter set for spring and summer and a heavier set for the fall and winter (Foster 1997:146). Clothing allotments often included both readymade clothing and cloth for making clothing (Stampp 1956:290; Genovese 1974:551). On larger plantations, a few female slaves would specialize in making the clothing. In other cases, female laborers were required to perform the extra work to supply their family with clothing (Genovese 1974:551). The following excerpt from James H. Hammond’s plantation manual is a typical example of a seasonal clothing allowance (Stampp 1956:291):

> Each man gets in the fall 2 shirts of cotton drilling, a pair of woolen pants and a woolen jacket. In the spring 2 shirts of cotton shirting and 2 pr. of cotton pants…Each woman gets in the fall 6 yds. of woolen cloth, 6 yds. of cotton drilling and a needle, skein of thread and ½ dozen buttons. In the spring 6 yds. of cotton shirting and 6 yds. of cotton cloth similar to that for men’s pants, needle thread and buttons. Each worker gets a stout pr. of shoes every fall, and a heavy blanket every third year.

The standard annual clothing allowance for men was around four cotton shirts, two pairs of cotton pants, two pairs of wool pants, and one or two pairs of shoes (Fogel and Engerman 1974:116-117). For women, four dresses were issued per year, or the necessary cloth for making them. For the winter, men would have jackets or overcoats and women sometimes had petticoats. Slaves also sometimes received stockings, hats, caps, and head cloths (Stampp 1956:291; Fogel and Engerman 1974:117). Children were most commonly issued a long shirt until they reached puberty (Stampp 1956; Fogel and Engerman 1974; Foster 1997:152).
Contemporary sources described the textile mill slaves as “well clothed” and “decently clothed” (Pensacola Gazette 1846b; Keyser 1848). As standards for clothing slaves improved during the 19th century, it is not surprising that the textile mill slaves were described as adequately clothed (Genovese 1974:550). Primary sources also indicated that “nearly all of [the textile mill slaves] had a Sunday suit” and that the “women bought finery” with money earned from extra work and from the sale of chickens and vegetables (Keyser 1848; Dorr [1900]:17). Similarly, historian Kenneth Stampp (1956:290) stated that “many ordinary slaves acquired a little holiday finery as gifts at Christmas, or with money earned from extra work or from the sale of their small crops.” Stampp (1956:290) also stated that “a woman might own some cheap jewelry, a printed calico dress, and a colorful handkerchief for her head.”

It is possible that the female textile mill slaves sewed garments from the same coarse cotton textiles they produced in the mill. Antebellum advertisements, including those in the Pensacola Gazette, advertised “negro cloth,” which generally meant durable fabric suitable for making slave clothing (Foster 1997:332). “Negro cloth” included a variety of types, most notably “osnaburg,” which was a “rough coarse durable cotton fabric in plain weave made originally of flax and used in the gray for bagging and industrial purposes” (Genovese 1974; Foster 1997:332). Other types of “negro cloth” included “calicoes, nankeens, tows, linsey-woolseys, cassimeres, ducks, kerseys, and Kentucky jeans,” among others (Stampp 1956:290).

During the lumber mill years from 1828 to 1840, the clothing allowance was comprised of at least readymade clothing. It is possible that very little slave clothing was manufactured at Arcadia during this period, as the population lacked wives for sewing and the size for specialized seamstresses. It is possible that the lumber mill slaves earned money and purchased clothing, as
was common among slaves at the textile mill and throughout the south. According to Stampp (1956:290), “a man might own a felt hat, a fine cotton shirt, and a good pair of woolen trousers.” As for all slave owners, it was necessary for Forsyth and Simpson to provision their slaves in a cost effective manner. For example, Joseph Forsyth purchased old clothing for his slaves from at least one U.S. Navy auction. The auction record provides the most detailed information available on clothing for the lumber mill slaves.

The auction was held at the Navy Yard in Pensacola on 2 October 1838 for the purpose of selling “condemned clothing and provisions…for the benefit of the U.S. Navy Department” (Navy Yard of Pensacola 1838). In context, “condemned” meant unserviceable, as in bad provisions and old stores (Smyth 1867). In addition to old clothing, various quantities of flour, raisins, cheese, rice, beans, and bread were sold at the auction. Table 3.1 describes the type of clothing article available for purchase, the average price paid per type by purchasers, and the total quantity of articles sold at the auction.

### TABLE 3.1
CLOTHING ARTICLES BY PRICE AND AMOUNT SOLD AT AUCTION

<table>
<thead>
<tr>
<th>Article</th>
<th>Average Unit Price</th>
<th>Total Articles Sold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duck Banyans</td>
<td>$0.33</td>
<td>440</td>
</tr>
<tr>
<td>Blue Cloth Jackets</td>
<td>$0.67</td>
<td>412</td>
</tr>
<tr>
<td>Blue Cloth Trousers</td>
<td>$1.96</td>
<td>47</td>
</tr>
<tr>
<td>Blue Cloth Vests</td>
<td>$0.44</td>
<td>53</td>
</tr>
<tr>
<td>Red Cloth Vests</td>
<td>$0.31</td>
<td>656</td>
</tr>
<tr>
<td>Blue Cotton Jackets</td>
<td>$0.27</td>
<td>1,054</td>
</tr>
<tr>
<td>White Cotton Frocks</td>
<td>$0.81</td>
<td>104</td>
</tr>
<tr>
<td>Wool Hats</td>
<td>$0.13</td>
<td>164</td>
</tr>
<tr>
<td>Covered Hats</td>
<td>$0.03</td>
<td>138</td>
</tr>
</tbody>
</table>

Total 3068
Clothing articles purchased at the auction were typical of enlisted men’s uniforms during this period (U.S. Navy 1818, 1833, 1841; Navy Commissioners’ Office 1837). According to naval historian James Tily (1964:75), typical dress included a “black, beribboned hat; short jacket [blue] with numerous small Navy buttons; white frock with blue collar and bib; full-bottomed white trousers; and pumps.” Primary sources between 1818 and 1841 indicated that other items used included: pea jackets, blue cloth trousers, red vests, blue vests, duck frocks, and duck trousers (U.S. Navy 1818, 1833, 1841; Navy Commissioners’ Office 1837).

Purchasers who paid on credit were listed by name in the auction book, along with the type, quantity, and price paid for individual items. Cash sales, which accounted for 595 of the 3,068 clothing articles sold, did not include the buyers’ names. Twenty-four different purchasers were listed in the account book by name. They included at least a sawmill owner, a fort engineer, slave labor contractors, merchants, and ship captains. The three largest clothing purchasers on credit were Jasper Strong, Dean and Parsons, and Joseph Forsyth. Dean and Parsons were local merchants who sold a variety of staple and dry goods, including merchandise purchased at auction (Pensacola Gazette 1837c, 1837d). Jasper Strong was the contract engineer for the Army fortifications in Pensacola and owned a large slave labor force (Dibble 1974:63; Handley 2005:41-42, 63-69).

Several slave owners were identified among the various purchasers. Slave owners included Joseph Forsyth, Jasper Strong, George Terrell, Celestino Gonzalez, and Henry Ahrens. Around 1838, Joseph Forsyth owned from 27 to 32 male slaves between 10 and 54 years of age. E.E. Simpson could have owned as many as 5 male slaves between 10 and 35 years of age. The 1840 census indicated that Jasper Strong owned or was in immediate possession of 57 slaves,
including 38 male slaves between 24 and 54 years of age (U.S. Bureau of the Census 1840). Although Strong sold 54 male slaves two years prior, it is possible that he owned and rented out other slaves not accounted for in the census (Handley 2005:123). It is also possible that he was preparing to purchase additional slaves for the construction of Fort Barrancas, which began in 1839. George Terrell was another buyer at the auction who owned slaves. In 1840, George Terrell was employed at the Navy Yard and was in possession of 100 slaves, including 39 male slaves between 10 and 54 years of age (U.S. Bureau of the Census 1840). Celestino Gonzalez, supervisor of construction at Fort Barrancas, purchased items at the auction and owned 14 slaves, including 8 males between 10 and 35 years of age (Mullins 2001:61-63). Henry Ahrens, who was a wealthy merchant, also purchased items at the auction and owned 14 slaves, including 11 males between 10 and 54 years of age (U.S. Bureau of the Census 1840). Others buyers either did not own slaves or were not identified in census records. In addition, other slave owners may have paid cash and were not identified by name. Table 3.2 includes the type and quantity of clothing articles purchased by Forsyth, Strong, Terrell, and Dean and Parsons.

### TABLE 3.2
CLOTHING PURCHASED AT AUCTION BY THREE LARGEST SLAVE OWNERS AND A MERCHANT

<table>
<thead>
<tr>
<th>Article</th>
<th>Joseph Forsyth</th>
<th>Jasper Strong</th>
<th>George Terrell</th>
<th>Dean &amp; Parsons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duck Banyans</td>
<td>140</td>
<td>50</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Blue Cloth Jackets</td>
<td>30</td>
<td>20</td>
<td>20</td>
<td>138</td>
</tr>
<tr>
<td>Blue Cloth Trousers</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Blue Cloth Vests</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Red Cloth Vests</td>
<td>0</td>
<td>50</td>
<td>20</td>
<td>200</td>
</tr>
<tr>
<td>Blue Cotton Jackets</td>
<td>100</td>
<td>300</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>White Cotton Frocks</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>Wool Hats</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Covered Hats</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>335</strong></td>
<td><strong>420</strong></td>
<td><strong>130</strong></td>
<td><strong>408</strong></td>
</tr>
</tbody>
</table>
Forsyth purchased 140 duck banyans at the auction. Banyan, or “banian”, was another name for a sailor’s frock shirt, which was a collared loose pullover that extended to the hips (Smyth 1867; Tily 1964:59, 75). The sailor’s frock was usually white and sometimes included a blue collar and bib, as illustrated in Figure 3.2 (Tily 1964:75). Duck was a durable untwilled closely woven fabric, similar to very fine canvas, typically made of cotton, linen, or hemp (Foster 1997:330). Duck frocks and trousers were used frequently by seamen and soldiers on tropical stations (Smyth 1867; U.S. Navy 1818). Although, they were part of the winter uniform as well (Naval Magazine 1836:243). The tightly woven fabric repelled water and protected against the elements. According to one sailor, duck frocks were especially useful for tarring a ship’s rigging (Dana 1840:54, 422). The duck banyans purchased by Forsyth may have been well suited for sawmilling activities. If Forsyth provided his male slaves with the standard four shirts a year, including two for the warm months and two for the cold months, then the 140 duck banyans would have clothed 35 slaves for a year. As previously noted, Forsyth owned around 27 male slaves in October 1838, when the auction was held, and purchased an additional 5 male slaves from New Orleans in January 1839.
Forsyth’s second largest purchase included 100 blue cotton jackets. These were short blue jackets that fastened with small Navy buttons (Tily 1964:75). Records indicate that enlisted men wore blue woolen jackets in the winter and, presumably, the lightweight cotton variety were intended for warmer months (U.S. Navy 1818, 1833, 1841). In West Florida, the blue cotton jackets were probably suitable for most of the year. The lithograph in Figure 3.3 depicts a lieutenant and an enlisted seaman in their summer uniforms. The enlisted man’s jacket is probably similar to the blue cotton jackets purchased by Forsyth at the auction. Summer jackets were most likely single breasted.

In addition to their utility, Forsyth may have been influenced by the price and durability of the cotton jackets. The average unit price paid for blue cotton jackets was less than half that of cloth jackets. Moreover, cotton stores longer than wool because it is not susceptible to clothes-moths, which only feed on animal-based clothing. The U.S. Navy often experienced problems storing woolen garments because of clothes-moths (Naval Affairs 1832:96). Not surprisingly, Forsyth only purchased enough wool items for the fall clothing allotment.

Although the winter is short and mild in West Florida, temperatures drop below freezing during the coldest months. In order to maintain the health of his slave population and ensure production at the mill, it was necessary for Forsyth to adequately clothe his slaves during the winter months. Conveniently, the auction appears to have coincided with Forsyth’s fall clothing allotment in 1838. Forsyth purchased 30 blue cloth jackets and 25 blue cloth trousers, which would have clothed nearly all of his male slaves for the fall and winter.
The blue cloth jackets were short blue woolen jackets that fastened with small brass Navy buttons. Figure 3.4 displays an 1838 woodcut titled “George Brown,” which depicts a boatswain’s mate in his winter uniform wearing a blue cloth jacket, blue cloth trousers, and a duck frock with a blue collar and bib (Naval Magazine 1836). The accompanying article states “the jacket of blue, to be sure, is not quite so fine as it might be; nor does it fit with more mathematical nicety than do “Uncle Sam’s” slops generally; but the slashed cuffs and bright eagle of our starry button, throw into the shade such trifling deficiencies.” The jacket depicted in the print is double breasted with broad lapels, similar to a pea jacket.

Unlike jackets, blue trousers were typically reserved for winter and white trousers were reserved for summer (U.S. Navy 1818, 1833, 1841). Enlisted men’s trousers were “full-bottomed,” meaning that they were flared around the ankles. The flared bottoms may have been a stylistic feature that had no functional utility (Rankin 1962:54). The description of the “George Brown” woodcut states that the trousers were “…of blue cloth, with no seam on the outside, very taut around the waist, sitting to the figure over the hips as smoothly as the skin itself, and fastened behind with a bunch of riband; legs sufficiently wide for ventilation and easy movement” (Naval Magazine 1836). Buttons are also displayed around the waistline, presumably for suspenders. However, the article indicated that sailors considered suspenders too constrictive and did not wear them. Forsyth probably purchased trousers similar to those described.
FIGURE 3.4. Boatswain’s mate in winter dress. George Brown as depicted in Naval Magazine, 1836.
Forsyth also purchased 20 wool hats and 20 covered hats. Enlisted men typically wore black low-crowned round hats, similar to those depicted in Figures 3.2, 3.3, and 3.4 (Tily 1964:59). The wool hats probably referred to those manufactured of wool felt, a cheap alternative to silk felt. Whereas, the “covered hats” probably referred to foul weather hats, often called tarpaulins, which were covered in tar or paint to render them waterproof (Smyth 1867). The utilitarian purpose of hats was to protect the face, neck, and shoulders from the sun and keep sweat and rain out of the eyes. As previously noted, it was common for slave owners to provide their slaves with a hat, cap, or head wrap of some type (Stampp 1956:291; Fogel and Engerman 1974:117).

Forsyth chose not to purchase blue cloth vests, red cloth vests, or white cotton frocks for his slaves. Whereas, Jasper Strong purchased vests and George Terrell purchased both vests and cotton frocks. Vests were refined apparel that were not a necessary element of work clothing. Single breasted vests were typically worn for formal wear and evening dress (Crawford 1994:140). Vests at the auction were made of wool fabric, which was used for day dress and suggests that these vests were worn for fall and winter (Crawford 1994:142-143). Compared to duck banyans, the white cotton frocks were less utilitarian and not as suitable for sawmilling. Duck textiles were among those categorized as “negro cloth” by merchants and slave owners (Stampp 1956:290). Therefore, it is not surprising that Forsyth chose duck banyans over white cotton frocks.
CHAPTER IV

ARCHAEOLOGICAL METHODOLOGY

The following chapter outlines previous archaeological research conducted at Arcadia Mill, field and lab methodologies at Area A, and the analytical methodology employed for the archaeological portion of this investigation.

Previous Archaeological Research

Investigations began in 1988 when the Santa Rosa Historical Society acquired the property and contracted with the UWF Archaeology Institute to conduct an archaeological field evaluation of the site. The major objective of the project was to determine locations within the site associated with specific human activities (Little et al. 1989:87). Archaeologists established a site grid, recorded surface features and artifacts, and excavated 63 shovel tests (Little et al. 1989:1-3). A very general layout of the site was identified from the results, including the locations of several presumed industrial and residential areas. Four different residential areas, termed Areas 1-4 by Sams (2013), were identified based on concentrations of domestic and architecture related materials. The 1988 report identified domestic artifact concentrations in the northern uplands landform, which was the general location of archaeological investigations from 2009 to 2011.

The UWF Archaeology Institute conducted subsequent archaeological investigations in 1990 that focused on documenting and interpreting the industrial components of the site, located in the lowlands adjacent to Pond Creek. Excavations concentrated on the dam, structural remains of the first sawmill, and the foundations of the second sawmill and the textile mill (Phillips 1993). This research was instrumental in the evolution of the site because it provided a thorough
examination of the mill’s major industrial features, provided tangible interpretive information for
the public, and laid the foundation for future investigations of the human population that lived
and worked at Arcadia.

After the site was transferred to UWF in 2004, the Archaeology Institute returned to
Arcadia Mill from 2009 to 2012 to conduct archaeological field schools and investigate different
parts of the Arcadia Mill community (see Figure 4.1). For a description of 2012 excavations,
which took place at the Simpson Lot in the southern uplands, refer to Cochran (2013). Prompted
by the 1988 survey data from Area 4, the 2009 field season commenced with a large scale
systematic shovel test survey of the northern uplands landform (Sams 2013). The goal of the
fieldwork was to locate and define mill-related residential areas located within property
boundaries (Phillips 2009). All shovel tests were 50 x 50 cm round, excavated in 20 cm arbitrary
levels to a depth of 100 cm below the surface, and screened through 1/4 in. hardware cloth. The
survey began with a 20 m survey interval and later shifted to a 10 m interval within an area of
high artifact concentration, termed Area A. The initial 20 m survey consisted of 85 shovel tests.

The 20 m shovel test survey revealed two major areas within the uplands, termed Area A
and Area B. Area B is located in the northeastern part of the survey area and yielded only
modern material. Area A is located to the southwest of Area B on a toe slope. Area A
encompasses the cultural deposits identified during the 1988 survey, later termed Area 4 by
Sams (2013). As part of the 20 m survey in 2009, 47 shovel tests were placed within Area A,
including 10 positive and 37 negative shovel tests. Following the initial survey, the interval was
reduced to 10 m within Area A to better delineate its spatial boundaries. This survey included 56
shovel tests, including 34 positive and 22 negative shovel tests. The 10 m survey revealed that
the highest concentration of domestic artifacts was located within a 20 x 40 m area. This area also included bricks and cut sandstone on the surface that were indicative of a structure.

FIGURE 4.1. Map of Arcadia Mill Archaeological Site. Courtesy of the Archaeology Institute, University of West Florida, Pensacola, FL.
**Field Methodology**

Area A became the focus of excavations for the remainder of the 2009 field season (09V) and the following 2010 and 2011 field seasons (10V and 11B). Investigators were interested specifically in defining the layout of Area A, which included determining the quantity, location, and dimension of structures. The general focus included identifying elements of the Arcadia Mill community, such as structures, refuse features, and artifact concentrations. Lacking aid from the historical record, investigations proceeded with a standard exploratory excavation strategy. Shovel tests, surface features, soil probes, and geophysical tests were used to determine the initial placement of excavation units at Area A and new data was considered as excavations progressed.

The investigation of Area A was completed through the excavation of a variety of shovel tests, test units, trenches, and blocks (see Figure 4.2). A total of 101 units were excavated at Area A over the three field seasons. Excavations included 71 1 x 1 m units, 25 1 x 2 m units, and five 2 x 2 m units. In addition, there were 65 round shovel tests and 11 square shovel tests located at or within close proximity to the 20 x 40 m area identified in 2009. Excavation was completed by shovel shaving and troweling arbitrary 10 cm levels. During the 2009 and 2010 field seasons, excavated soil was screened through 1/8 inch mesh hardware cloth to recover inclusions. During the 2011 field season, excavated soil was screened through 1/4 inch mesh hardware cloth. All unit coordinates were taken from the southwest corner of each test unit.
There was a total of 49 proposed features recorded at Area A from 2009 to 2011, some of which were identified as part of the same feature. Features were defined as any soil anomaly, stone, or brick configuration that appeared to be cultural. During the 2009 and 2010 field seasons, features were excavated using trowel and/or spoon and screened through 1/16 inch mesh hardware cloth. In 2011, features were excavated using trowel and/or spoon and screened through 1/8 inch mesh hardware cloth. When possible, features were excavated by natural strata. Twenty-nine of the features recorded were architectural and related to structures. These primarily included sandstone piers, brick piers, and post holes. The other 20 features were non-
architectural and included primarily two different loci of sheet midden, and possible hearth features.

Laboratory Methodology

All artifacts collected in the field from Area A were returned to the terrestrial archaeology lab at the University of West Florida for processing and analysis. In the lab, artifacts were cleaned, sorted, catalogued, and entered into an Access database. Under the supervision of field supervisors and the lab director, students performed much of the initial lab work. By provenience, all artifacts were rough sorted into general material categories, such as ceramics, glass, metal, and brick, among others. After rough sorting, artifacts were subdivided into specific artifact types and tabulated. Counts were not tabulated for charcoal, cinder/slag, mortar, plaster, less than 1/2 in. brick, and less than 1/4 in. scanned fraction. Otherwise, all specific artifact types were counted and weighed. After sorting, catalog numbers were assigned to the artifact types by provenience. Artifacts were boxed and stored at the curation facility at the University of West Florida.

Analytical Methodology

The archaeological deposits at Area A were shallow, within 0 to 30 cmbs, and excavations revealed excellent site integrity. Based on evidence from the historical record and the archaeological analysis presented in the following chapters, Area A has multiple historic components that occurred within a 30 year period. It was not possible, however, to delineate different components stratigraphically. Furthermore, field excavations did not produce enough information to determine the exact number, layout, or location of structures at Area A, which
reduced the potential for a spatial analysis. Therefore, the current study approached the assemblage as a whole, and not by unit or feature.

The purpose of the archaeological analysis was to test whether or not slaves occupied Area A and to examine their material living conditions. These objectives were addressed by placing the assemblage within an historical context as items “owned” and used by slaves, testing hypotheses related to the historical record, and by comparing the assemblage with findings from plantation slave sites. Researchers concluded over three decades ago that, while economic status is discernable, it is not possible to differentiate between slave and overseer utilizing the archaeological record alone (Lange and Handler 1985:16). With the exception of rare cultural markers, there are no one-to-one relationships between artifacts and African Americans (Singleton 1995:130-134; Brandon 2009:7). Lacking necessary historical documentation, it was not possible to develop analytical tests which would differentiate adequately between these two groups at Arcadia Mill. In order to formulate meaningful hypotheses, the assemblage was approached within a slave context. Discussing the material culture from Area A as items “owned” and used by slaves assisted with interpretation and provided a stronger framework from which to demonstrate that African American slaves occupied Area A. Archaeologist William Updike (2002) employed a similar methodology to argue that African American slaves occupied the Willow Bluff Site, located in Kanawha County, West Virginia.

Results were classified into functional categories modified from Orser and Nekola (1987), which included the following: Foodways, Clothing, Household/Structural, Personal, Labor, and Nonspecific. Subcategories within each category were used to both organize the results and analyze material living conditions at Area A. Foodways included all artifacts related
to food procurement, preparation, service, storage, and remains. Clothing comprised all artifacts related to clothing, footwear, and clothing maintenance and manufacture. Household/Structural included items related to architecture, encompassing the superstructure and hardware attached to it, as well as furnishings/accessories, which consisted of additions to the household such as stove parts, furniture, and lamp parts. The Personal Category included a variety of artifacts which may have been used by individual persons, encompassing those related to medicine, cosmetics, decoration, recreation, and communication. Labor comprised all items related to physical work, such as construction, transportation, agriculture, and industry (Orser et al. 1987).

For this study, I explored a variety of archival documents for demographic data and other contextual information about the slave population, which was presented in Chapter 3. I also formulated hypotheses based on primary historical results and on archaeological data from plantation slave sites. Specifically, a variety of analytical tests were designed to provide specific information about chronology and demographics, such as gender and economic status. The assemblage was also considered for information about the inhabitant’s material living conditions, including food, housing, and clothing, among other basic information about access to resources.

Area A was occupied during Arcadia Mill’s history, which generally extended from 1828 to 1855. However, the mill’s history is defined by two largely different industrial periods and slave populations. Therefore, chronology was important for determining what part of the slave population lived at Area A. The purpose of testing chronology at Area A was to assess whether the site was occupied during the 1828-1840 period, the 1845-1855 period, or both. Test implications involved primarily identifying diagnostic artifacts. However, based on historical research, gender- and labor- specific artifacts also served as chronological markers.
Demographics and shifting sex ratios were an important difference between the two periods at Arcadia Mill. To test gender at Area A, certain artifact types were grouped into traditional male and female specific categories and assessed based on frequency. It was expected that artifacts related to food procurement, smoking tobacco, and sex specific clothing types would be represented if male slaves were present. Similarly, it was expected that artifacts related to clothing maintenance/manufacture, sex specific clothing types, jewelry, and textile mill artifacts would be represented if female slaves were present (Brasher 1991; Hardesty 1994; Starbuck 1994; Fesler 2004). As males were potentially present during both periods, testing for females was also significant for chronological purposes.

Slave populations had limited access to resources and were typically of lower economic status. Economic status was tested to support or refute a slave occupation and to define a fundamental pattern related to material living conditions at Area A. To examine economic status, ceramics, architectural remains, and clothing artifacts were analyzed.

Pearlware and whiteware ceramics were separated into George Miller’s four price-based categories to provide a general economic scale for the sample (Miller 1980). It was expected that the sample would exhibit a high frequency of undecorated and minimally decorated wares and a lower frequency of hand painted and transfer printed wares (Ascher and Fairbanks 1971; Fairbanks 1974; Otto 1975). It was also expected that the sample would exhibit a low frequency of porcelain, which is also considered a general indicator of lower economic status (Lewis and Hardesty 1979; Lewis and Haskell 1980).

Architecture was examined by assessing the type of structures that existed at Area A. It was expected that the structures at Area A would differ in architectural style, ornamentation, and
durability from those of higher economic status at Arcadia and in the Antebellum South more broadly (Otto 1975; Lewis and Hardesty 1979; Lewis and Haskell 1980; Vlach 1993; Kenline 2012). Architectural material was evaluated based on construction material, fittings and hardware, and furnishings/accessories.

Clothing buttons were evaluated by determining their function, specifically by garment type (South 1964; Hinks 1995; Lindbergh 1999; Rivers 1999; Venovcevs 2013). It was expected that, because slaves had less access to extra types of garments like vests, these fasteners would be less frequent in the sample. Results were compared with the limited historical and archaeological sources available. In addition, U.S. Navy auction records were identified, which provided an opportunity to compare historically documented items with those in the archaeological record. Based on the types of clothing purchased, it was expected that shirt buttons, trouser buttons, and small brass U.S. Navy buttons would be represented in the sample.
CHAPTER V
RESULTS

Introduction

The following section includes a description of the historic cultural materials recovered from Area A. The data are organized into functional categories that include foodways, clothing, household/structural, personal, labor, nonspecific, and unidentified (Orser and Nekola 1987; Orser et al. 1987). A summary of the functional categories is provided in Table 5.1. The composite assemblage consisted of 52,466 artifacts with a total weight of 571,933.8 g. The two most represented functional categories in the assemblage were household/structural and foodways.

<table>
<thead>
<tr>
<th>Functional Category</th>
<th>Count</th>
<th>%</th>
<th>Weight</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foodways</td>
<td>4,651</td>
<td>8.9%</td>
<td>17,737.4</td>
<td>3.1%</td>
</tr>
<tr>
<td>Clothing</td>
<td>119</td>
<td>0.2%</td>
<td>3564.8</td>
<td>0.6%</td>
</tr>
<tr>
<td>Household/Structural</td>
<td>43,577</td>
<td>83.1%</td>
<td>52,543.16</td>
<td>91.9%</td>
</tr>
<tr>
<td>Personal</td>
<td>272</td>
<td>0.5%</td>
<td>980.8</td>
<td>0.2%</td>
</tr>
<tr>
<td>Labor</td>
<td>33</td>
<td>0.1%</td>
<td>2,245.8</td>
<td>0.4%</td>
</tr>
<tr>
<td>Nonspecific</td>
<td>106</td>
<td>0.2%</td>
<td>10,262.6</td>
<td>1.8%</td>
</tr>
<tr>
<td>Unidentified</td>
<td>3,708</td>
<td>7.1%</td>
<td>11,710.8</td>
<td>2.0%</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>52,466</td>
<td>100.0%</td>
<td>571,933.8</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Foodways

The foodways category is composed of all items associated with food procurement, preparation, service, storage, and remains. It comprised 8.9% of the total assemblage by count and 3.1% by weight. The count, weight, and percentages of the foodways subcategories are summarized in Table 5.2. Service and storage represent the two largest subcategories by count and weight.
TABLE 5.2
FOODWAYS SUBCATEGORIES BY COUNT AND WEIGHT

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>Count</th>
<th>%</th>
<th>Weight</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procurement</td>
<td>214</td>
<td>5%</td>
<td>183.6</td>
<td>1%</td>
</tr>
<tr>
<td>Preparation</td>
<td>7</td>
<td>&lt;1%</td>
<td>1,631.6</td>
<td>9%</td>
</tr>
<tr>
<td>Service</td>
<td>2,819</td>
<td>61%</td>
<td>8,187.7</td>
<td>46%</td>
</tr>
<tr>
<td>Storage</td>
<td>1,611</td>
<td>35%</td>
<td>6,531.9</td>
<td>37%</td>
</tr>
<tr>
<td>Remains</td>
<td>n/a</td>
<td>n/a</td>
<td>1202.6</td>
<td>7%</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>4,651</td>
<td>100%</td>
<td>17,737.4</td>
<td>100%</td>
</tr>
</tbody>
</table>

Procurement

The excavations at Area A produced 214 artifacts related to food procurement, including gun furniture, gunflints, percussion caps, a large amount of lead shot, and a harpoon/gig. The count and distribution of procurement artifacts is summarized in Table 5.3.

TABLE 5.3
FOOD PROCUREMENT BY COUNT AND WEIGHT

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escutcheon Plate</td>
<td>5</td>
<td>2%</td>
</tr>
<tr>
<td>Gunflint Flake</td>
<td>6</td>
<td>3%</td>
</tr>
<tr>
<td>Gunflint Fragment</td>
<td>12</td>
<td>6%</td>
</tr>
<tr>
<td>Whole Gunflint</td>
<td>3</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Percussion Cap</td>
<td>32</td>
<td>15%</td>
</tr>
<tr>
<td>Sprue</td>
<td>2</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Shot</td>
<td>148</td>
<td>69%</td>
</tr>
<tr>
<td>Bullet</td>
<td>4</td>
<td>2%</td>
</tr>
<tr>
<td>Shell</td>
<td>1</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Fishing Gear</td>
<td>1</td>
<td>&lt;1%</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>214</td>
<td>100%</td>
</tr>
</tbody>
</table>

The recovery of gunflints and percussion caps indicated that both flintlock and percussion lock firearms were present at Area A. The flintlock ignition system was developed during the first half of the 17th century and remained dominant until it was replaced gradually by percussion lock during the first half of the 19th century. Flintlock muskets were used in limited
numbers as late as the American Civil War (O’Connor 1961:18). Gunflints at Area A included whole gunflints, gunflint fragments, and gunflint flakes. Types include light and dark gray, honey colored, and a single flake of a regional chert.

The percussion powder system was patented in 1807 and the copper percussion cap was developed by the early-1820s (Chapel 1939: 57; Winant 1959: 4, 32-50; O’Connor 1961: 17-18). Flintlock firearms were being converted to percussion lock starting around 1825 and the percussion cap came into general use on private arms by 1835 (Chapel 1939: 61, 65; Winant 1959: 6). Both brass and copper percussion caps were recovered at Area A.

Nearly all of the ammunition recovered was lead shot. Birdshot, defined as less than 20-caliber in size, comprised 84% of the shot recovered. The remaining shot was in the general range of buckshot. It is possible that the larger round balls were single projectiles in small bore firearms. The large amount of shot in the sample indicates that the occupants were engaged in hunting activities. Other ammunition recovered included three small spent lead bullets, one 7 mm shell, and one large shotshell.

Fishing gear was represented by one wrought iron harpoon/gig specimen with a two fluted head. The whole specimen measured 8.6 cm in length and would have been affixed to the end of a long pole. The head measured approximately 3.1 cm wide and the edges were forged thin and sharp. This specimen was either a harpoon or a gig and could have been used to catch fish or small game, such as frogs.

Preparation

Artifacts in the preparation subcategory are related to food preparation. Preparation is represented by seven iron pot fragments weighing a total of 1,631.6 g. Types included a handle,
lid, leg, rim/body/handle, and two body fragments. At least three of these fragments were cast iron. There were at least two vessels. One vessel was relatively small compared to the other and possibly represented a cast iron tea kettle. The lid measured 14.4 cm in diameter. The larger vessel could have been used to cook food, as well as to boil water for washing clothes and bathing.

**Service**

Artifacts in the service subcategory are those most functionally related to food consumption. Materials from Area A included in food service consisted of refined earthenware (n=2771), porcelain (n=12), glass tableware (n=19), and utensils (n=17). Refined earthenware was the most common artifact type by count and weight.

Refined earthenwares were typically used as tableware, and included plates, platters, bowls, and cups, among a variety of other forms. Refined earthenwares in the assemblage included creamware, pearlware, whiteware, yellowware, ironstone, and indeterminate refined earthenware. Table 5.4 displays the count, weight, and percentage of these ware types.

**TABLE 5.4**

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
<th>%</th>
<th>Weight</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creamware</td>
<td>43</td>
<td>2%</td>
<td>50.6</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Pearlware</td>
<td>234</td>
<td>8%</td>
<td>950.8</td>
<td>12%</td>
</tr>
<tr>
<td>Whiteware</td>
<td>2,434</td>
<td>88%</td>
<td>6,575.8</td>
<td>85%</td>
</tr>
<tr>
<td>Yellowware</td>
<td>40</td>
<td>1%</td>
<td>110.8</td>
<td>1%</td>
</tr>
<tr>
<td>Ironstone</td>
<td>3</td>
<td>&lt;1%</td>
<td>49.2</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Indeterminate</td>
<td>17</td>
<td>&lt;1%</td>
<td>14.5</td>
<td>&lt;1%</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>2,771</td>
<td>100%</td>
<td>7,751.7</td>
<td>100%</td>
</tr>
</tbody>
</table>

Whiteware and pearlware comprise the two largest types of refined earthenware recovered. Pearlware was developed as early as 1779 and production continued until whiteware
began replacing it around 1820 (Hume 1969:130-131; Price 1979:10-11; Miller 1980:2). Decorative types for whiteware and pearlware recovered from Area A included plain/undecorated, several minimally decorated types (e.g. annular, shell edge, sponged, etc.), those with hand painted motifs, and transfer printed designs. Some plain sherds likely came from the undecorated space of decorated wares, such as edge decorated wares and hand painted wares with small sprig decorations.

The decorative types were separated into George Miller’s (1980) four price-based categories to provide a general economic scale for whiteware and pearlware. Miller determined that, from the late 18th century until the mid-1850s, price for pottery was determined by how it was decorated (1980:3-4). Ceramics generally increased in price based on the skill required to design them. These included, in order of cost, plain wares, minimally decorated wares, hand painted wares, and transfer printed wares. At Area A, by sherd count, plain wares comprised 50% (n=1341), minimally decorated wares comprised 22% (n=578), hand painted wares comprised 13% (n=341), and transfer printed wares comprised 15% (n=408).

Mean beginning and end production dates were generated for transfer printed pearlware and whiteware based on color and sherd count (Samford 1997:20). Results indicated that the mean dates of production ranged from 1817 to 1848 (Table 5.5).
Results also indicated that 47% of the sherds, specifically black and medium blue, had a mean beginning production date of 1817 and a mean end production date of 1838. Based on total range of manufacture, the same 47% dated from 1784 to 1864. Neither brown on ivory body nor black on ivory body sherds, which both date exclusively after the antebellum period, were identified in the assemblage. At least one flow blue vessel was recovered, which was not available in the U.S. market until the early 1840s (Samford 1997:24). A red and green plate was also recovered, which most likely dates after 1840, as two or more printed colors were not introduced until that time (Samford 1997:22). Figure 5.1 provides a sample of transfer printed sherds in the assemblage.
FIGURE 5.1. Sample of transfer printed ceramics recovered from Area A. Row 1 (left to right): 11B-4169-003, 11B-4320-008, 10V-3190-004, 11B-4178-002, 11B-4259-15, 10V-3382-001, 11B-4174-002, 11B-4334-001; Row 2 (left to right): 11B-4162-002, 10V-3336-003, 10V-3175-001, 10V-3098-016, 11B-4221-004, 11B-4296-007, 11B-4273-001; Row 3 (left to right): 11B-4143-008, 11B-4283-006, 11B-4051-003. Image by author, 2014.
The complete maker’s mark on the red and green plate would have read: [Scott’s Illustrations] Legend of Montrose [DA] VENPORT. This plate included a green non-continuous border design with a red central motif, which depicted a scene from a story titled the Legend of Montrose (see Figure 5.2). This plate was part of a set of transfer printed patterns called Scott’s Illustrations by Scottish author Sir Walter Scott, who was a popular author in the Antebellum South (Kwas 2009:105). The illustrations were originally published in a collected edition of Scott’s works in 1829 and 1830 and the earliest plates are backmarked with an 1836 date (Kwas 2009:105). Although the specimen was incomplete, these plates usually appear with an accompanying backmark by the New Orleans importer Henderson and Gaines, who were major importers of Davenport pottery. They operated from 1836 to 1866 (Walthall 2013:286-292).
Mean beginning and end production dates were also generated for pearlware and whiteware based on border type and minimum number of vessels (see Table 5.6). Results indicated that the mean dates of production ranged from 1818 to 1858. Results also indicated that 64% of the vessels identified had mean dates of production, which ranged from 1818 to 1836. One vessel exhibited a border design with a mean beginning production date after 1840.

**TABLE 5.6**
DATES FOR TRANSFER PRINTED PEARLWARE AND WHITEWARE BY BORDER TYPE AND MINIMUM NUMBER OF VESSELS*

<table>
<thead>
<tr>
<th>Border Type</th>
<th>MNI</th>
<th>%</th>
<th>Mean Beginning</th>
<th>Mean End</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Repeating Floral</td>
<td>6</td>
<td>43%</td>
<td>1820</td>
<td>1836</td>
<td>1784-1856</td>
</tr>
<tr>
<td>Continuous Repeating Geometric</td>
<td>3</td>
<td>21%</td>
<td>1818</td>
<td>1829</td>
<td>1784-1864</td>
</tr>
<tr>
<td>Continuous Repeating Other</td>
<td>1</td>
<td>7%</td>
<td>1825</td>
<td>1848</td>
<td>1784-1910</td>
</tr>
<tr>
<td>Continuous Repeating Linear</td>
<td>1</td>
<td>7%</td>
<td>1842</td>
<td>1858</td>
<td>1820-1891</td>
</tr>
<tr>
<td>Vignettes Scenic</td>
<td>2</td>
<td>14%</td>
<td>1832</td>
<td>1847</td>
<td>1790-1889</td>
</tr>
<tr>
<td>Noncontinuous Repeating</td>
<td>1</td>
<td>7%</td>
<td>1829</td>
<td>1843</td>
<td>1799-1894</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>14</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Adapted from Samford 1997:18

Other refined earthenware types include creamware, yellowware, ironstone, and unidentified refined earthenware. Creamware was developed around 1762 and remained popular until around 1820, although production of plain creamware continued (Hume 1969:124, Price 1979:10; Miller 1980:3). Decorative types in the assemblage included plain (n=25), molded (n=1), hand painted (n=7), and gilded (n=10). Yellow ware originated in England and was produced in America by the late 18th century. However, large scale production of yellow ware did not begin until around 1840 in Ohio (Gallo 1985; Ketchum 1987). Unlike most of the other refined earthenware, yellow ware was typically used for utilitarian purposes. For consistency, yellow ware was classified in the service subcategory with the other refined earthenware. Decorative yellow ware types recovered from Area A include plain (n=8), annular (n=11), and
blue and white (n=21). Ironstone was introduced around the first decade of the 19th century and gained popularity in the 1850s (Hume 1969:131; Price 1979:11; Miller 1980:3). Only three plain ironstone sherds were recovered from Area A.

Porcelain is a high-fired vitreous ware made from kaolin clay (Madsen and White 2011:31). Porcelain was entirely imported, usually from China, until the manufacturing process was perfected in Europe during the 18th century (Madsen and White 2011:24). Decorative types recovered from Area A include gilded (n=1), hand painted (n=1), and indeterminate (n=10).

The glass tableware represented a small portion of the service subcategory. Glass tableware included fragments of a bowl (n=1), glass tumbler (n=2), indeterminate drinking glass (n=14), and stemmed glass (n=2). The manufacturing type for the glass tableware was either molded or indeterminate. The glass bowl fragment was identified as press molded, which was a manufacturing process introduced in 1827 (Lorrain 1968:38-40).

A total of 17 utensil fragments were recovered from Area A, including fork (n=4), spoon (n=4), knife (n=3), and utensil handle (n=6) fragments. Almost all of the utensil items recovered were made of iron. One utensil handle was made of pewter and another utensil handle was made of brass.

Storage

Artifacts in the storage/utilitarian subcategory are those most associated with food and drink storage. These include stoneware (n=334), coarse earthenware (n=77), and glass bottles (n=1200). Glass bottles are the most frequent by count and weight.

Stoneware ceramics were grouped together as high fired ceramics that exhibited a very compact, nonporous paste. Stoneware vessels are nearly vitreous and typically glazed, making
them well suited for storage and utilitarian purposes. There were several stoneware types recovered from Area A. Alkaline glazed comprised 52% (n=175) of the stoneware by count, followed by brown salt glazed, which comprised 21% (n=70). Alkaline glazed stoneware is a distinctly Southern ceramic type that was being produced in Edgefield District, South Carolina, by the 1820s (Steen 2011). Two diagnostic stoneware types that date early for this site include Nottingham (n=46), 1700-1810, and Astburyware (n=2), 1725-1750. Two types that date relatively late include Albany Slip (n=5), 1865-Present, and Bristol Slip (n=1), 1850-1930.

Coarse earthenware ceramics are fired at lower temperatures and exhibit a soft and loosely compact paste. The coarse earthenware in the Area A assemblage likely represents storage and utilitarian vessels. A single brown slipped jug was the only specific coarse earthenware vessel identified. Several surface treatments were present in the assemblage, including alkaline glazed (n=20), lead glazed (n=27), brown slipped (n=2), and painted (n=2). Glazed and unglazed redware was also recovered (n=21).

There were several glass container types recovered from Area A (Table 5.7). Wine bottle fragments were the most represented. These curved olive green bottles also could have contained porter, beer, or cider. The “other bottle” fragments, whose function was not determined, were the second most frequent glass container type.

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
<th>%</th>
<th>Weight</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Bottle</td>
<td>10</td>
<td>&lt;1%</td>
<td>34</td>
<td>1%</td>
</tr>
<tr>
<td>Wine Bottle</td>
<td>612</td>
<td>51%</td>
<td>1,624.5</td>
<td>51%</td>
</tr>
<tr>
<td>Soda Bottle</td>
<td>2</td>
<td>&lt;1%</td>
<td>25.4</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Other Bottle</td>
<td>575</td>
<td>48%</td>
<td>1,492.1</td>
<td>47%</td>
</tr>
<tr>
<td>Vial</td>
<td>1</td>
<td>&lt;1%</td>
<td>0.3</td>
<td>&lt;1%</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>1200</td>
<td>100%</td>
<td>3176.3</td>
<td>100%</td>
</tr>
</tbody>
</table>
Remains

Food remains, which include flora (wt=22.2 g) and fauna (wt=1180.4 g), were not well represented in the assemblage. A large majority of the food remains were comprised of oyster shell. Due to the poor quality of the overall sample, a detailed description was not attempted.

Artifacts in this subcategory are summarized in Table 5.8.

TABLE 5.8
FOOD REMAINS BY WEIGHT

<table>
<thead>
<tr>
<th>Type</th>
<th>Class</th>
<th>Weight</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bird Bone</td>
<td>Fauna</td>
<td>0.2</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Cow Bone</td>
<td>Fauna</td>
<td>12.9</td>
<td>1%</td>
</tr>
<tr>
<td>Gastropod Unidentified</td>
<td>Fauna</td>
<td>1.6</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Indeterminate Bone</td>
<td>Fauna</td>
<td>11.5</td>
<td>1%</td>
</tr>
<tr>
<td>Indeterminate Mammal</td>
<td>Fauna</td>
<td>1</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Indeterminate Shell</td>
<td>Fauna</td>
<td>23.4</td>
<td>2%</td>
</tr>
<tr>
<td>Oyster</td>
<td>Fauna</td>
<td>1,122.9</td>
<td>93%</td>
</tr>
<tr>
<td>Rangia</td>
<td>Fauna</td>
<td>0.1</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Rat</td>
<td>Fauna</td>
<td>0.2</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Small Mammal Bone</td>
<td>Fauna</td>
<td>0.1</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Snail Shell</td>
<td>Fauna</td>
<td>6.5</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Nut</td>
<td>Flora</td>
<td>0.6</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Peach Pit</td>
<td>Flora</td>
<td>4.3</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Seed</td>
<td>Flora</td>
<td>17.3</td>
<td>1%</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td>1,202.6</td>
<td>100%</td>
</tr>
</tbody>
</table>
Clothing

The clothing category includes clothing fasteners (n=85), footwear (n=13), and items related to clothing maintenance and manufacture (n=21). Buttons were the most common artifact type recovered, followed by hooks and eyes and straight pins (Table 5.9). The following section includes a detailed description of each subcategory. The fastener subcategory includes buttons, hooks and eyes, buckles and other fasteners.

<table>
<thead>
<tr>
<th>Type</th>
<th>Subcategory</th>
<th>Count</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buttons</td>
<td>Fastener</td>
<td>56</td>
<td>47%</td>
</tr>
<tr>
<td>Hooks &amp; Eyes</td>
<td>Fastener</td>
<td>19</td>
<td>16%</td>
</tr>
<tr>
<td>Other Fasteners</td>
<td>Fastener</td>
<td>2</td>
<td>2%</td>
</tr>
<tr>
<td>Buckles</td>
<td>Fastener</td>
<td>8</td>
<td>7%</td>
</tr>
<tr>
<td>Shoe Frag. (Composite)</td>
<td>Footwear</td>
<td>2</td>
<td>2%</td>
</tr>
<tr>
<td>Heel Lifts</td>
<td>Footwear</td>
<td>3</td>
<td>3%</td>
</tr>
<tr>
<td>Aglet</td>
<td>Footwear</td>
<td>1</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Shoe Eye &amp; Hook</td>
<td>Footwear</td>
<td>3</td>
<td>3%</td>
</tr>
<tr>
<td>Shoe Eye/Grommet</td>
<td>Footwear</td>
<td>2</td>
<td>2%</td>
</tr>
<tr>
<td>Shoe Eyelet</td>
<td>Footwear</td>
<td>2</td>
<td>2%</td>
</tr>
<tr>
<td>Straight Pin</td>
<td>Maint./Manuf.</td>
<td>16</td>
<td>13%</td>
</tr>
<tr>
<td>Thimble</td>
<td>Maint./Manuf.</td>
<td>4</td>
<td>3%</td>
</tr>
<tr>
<td>Flatiron</td>
<td>Maint./Manuf.</td>
<td>1</td>
<td>&lt;1%</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td>119</td>
<td>100%</td>
</tr>
</tbody>
</table>

Fasteners

Buttons accounted for 47% of the clothing category. Material types included metal (n=23), porcelain (n=30), glass (n=2), and bone (n=1). Buttons were also grouped into types developed by Stanley South (1964). South developed 36 button types based on an analysis of the buttons from Brunswick Town (1726-1776) and Fort Fisher (1837-1865). In order to determine the clothing types that buttons may have been associated with, buttons were arranged into
functional categories based on size. Small buttons range in size from 8 to 15 mm and generally fastened underclothing, shirts, waistcoats, and sleeves/cuffs. Medium buttons range in size from 16 to 21 mm and generally fastened coats, jackets, and trousers (Lindbergh 1999:51). Design and type were also considered in order to define function more specifically. There were 23 metal buttons recovered, including South’s Types 18, 21, 24, 25, 26, and indeterminate (Table 5.10, Figure 5.3).

<table>
<thead>
<tr>
<th>Type</th>
<th>Material</th>
<th>Diameter</th>
<th>Description</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 18</td>
<td>Brass</td>
<td>11 mm</td>
<td>Flower dec.; Backmark</td>
<td>1</td>
</tr>
<tr>
<td>Type 18</td>
<td>Brass</td>
<td>12 mm</td>
<td>Flower and border dec.</td>
<td>1</td>
</tr>
<tr>
<td>Type 18</td>
<td>Brass</td>
<td>16 mm</td>
<td>Navy design; Backmark</td>
<td>1</td>
</tr>
<tr>
<td>Type 18</td>
<td>Brass</td>
<td>17 mm</td>
<td>Navy design; Backmark</td>
<td>1</td>
</tr>
<tr>
<td>Type 21</td>
<td>Iron &amp; Wood</td>
<td>17 mm</td>
<td>Four holes</td>
<td>1</td>
</tr>
<tr>
<td>Type 21</td>
<td>Iron &amp; Wood</td>
<td>20 mm</td>
<td>Four holes</td>
<td>1</td>
</tr>
<tr>
<td>Type 21</td>
<td>Iron &amp; Wood</td>
<td>18 mm</td>
<td>Four holes</td>
<td>2</td>
</tr>
<tr>
<td>Type 24</td>
<td>Iron</td>
<td>16 mm</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Type 25</td>
<td>Iron &amp; Brass</td>
<td>20 mm</td>
<td>Embossed circles</td>
<td>7</td>
</tr>
<tr>
<td>Type 26</td>
<td>Brass</td>
<td>27 mm</td>
<td>Fox face; Backmark</td>
<td>1</td>
</tr>
<tr>
<td>Indet.</td>
<td>Iron</td>
<td>18 mm</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Indet.</td>
<td>Iron</td>
<td>23 mm</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Indet.</td>
<td>Iron</td>
<td>21 mm</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Indet.</td>
<td>Iron</td>
<td>20 mm</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Indet.</td>
<td>Pewter</td>
<td>23 mm</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Indet.</td>
<td>Pewter</td>
<td>20 mm</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>
FIGURE 5.3. Assorted metal buttons. A. Type 21, trousers/outerwear, 11B-2264-039; B. Type 26, sporting coat button, 09V-2264-039; C. Type 25, coat/jacket, conserved, 11B-4048-013; D. Type 25, coat/jacket, not conserved, 11B-4026-019; E. Type 18, U.S. Navy, 11B-4234-003; F. Type 18, U.S. Navy, 11B-4167-038; G. Type 18, vest, 11B-4300-018; H. Type 18, vest, 11B-4053-038. Image by author, 2014.
There were four Type 18 buttons recovered from Area A. Type 18 buttons are brass, 1-piece flat disk buttons with a brass shank soldered to the back. Buttons of this type are often die-stamped on the back with a maker’s mark, concentric lines, and/or reference to gilding (South 1964:120).

Two of the Type 18 buttons exhibited flower sprig designs and were small in diameter. Hughes and Lester date these specific types of small gilt brass buttons from 1830 to 1850 (Hughes and Lester 1991:222-224). The first Type 18 specimen was a 1-piece gilt brass button with a beveled edge, depressed die-stamped flower sprig on the front, and an Omega shank. The maker’s mark on the back was stamped “EXTRA RICH / · R & W. R · ” with a ring to the inside of the text that encircled the base of the shank. The maker’s mark denotes Richard and Willard Robinson, an American button manufacturer in business from 1834 to 1848 (Tice 1997:17-18). The first specimen measured 11 mm in diameter.

The second Type 18 specimen was a 1-piece gilt brass button with a depressed die-stamped flower sprig and border, a missing Alpha shank, and no maker’s mark. According to Hughes and Lester (1991:224), alpha shanks were common on these small brass buttons, possibly as an adaptation to their small size. The second specimen measured 12 mm in diameter. The gilt plating, fancy design, and small size of both Type 18 specimens indicated that they were most likely worn on a vest or on jacket/coat sleeves. Hughes and Lester categorize them as vest buttons (Hughes and Lester 1991: 222-224).

The other two Type 18 buttons were brass U.S. Navy buttons. Both were recovered from Unit 53, located in Trench 3, Feature 322. The first specimen was a 1-piece gilt brass button with a die-stamped front and back and a missing Alpha shank. The front depicted a left facing eagle
resting on the stock of an upright foul anchor on an oval lined background with an inside border of 14 5-point stars. A rope design may have been present around the edge. The backmark was stamped “· WARRANTED · / SUPERIOR” with depressed rings inside and outside of the text. The diameter of the first U.S. Navy button was 16 mm.

The second U.S. Navy button was a 1-piece gilt brass button with a die-stamped front and back and an Omega shank. The front depicted a left facing eagle resting on the flukes of an upright foul anchor on an oval lined field with an inside border of 16 5-point stars. A rope design may have been present around the edge. The backmark was stamped “· L.H. & SCOVILL · / GILT” with rings inside and outside of the text. The maker’s mark denotes Leavenworth, Hayden, and Scovill, a button manufacturing company in operation from 1811 to 1827 (Tice 1997:27-28). The diameter of the second button was 17 mm. The second button was similar to the first, though not identical.

The major difference between the two U.S. Navy buttons was the orientation of the eagle on the face. The first specimen had an eagle resting upon the stock of an anchor and the second was resting on the anchor flukes. U.S. Navy buttons depicting an eagle resting upon the stock of an upright anchor on a lined oval background were formally introduced in 1830 (Johnson 1948:72; Albert 1976:86; Hughes and Lester 1991:718). A majority of U.S. Navy buttons of this eagle/anchor/oval background type date from 1830 to the early 1840s (Johnson 1948:72; Albert 1976:86; Tice 1997:155). However, a very similar antecedent, which depicted the eagle perched upon the anchor flukes, predates 1830 (Hughes and Lester 1991: 718). The first specimen matched the 1830 to early 1840s description and the second specimen matched the pre-1830 description. Additional differences included size, number of stars, shank type, and backmarks.
The function of these buttons differed depending on rank and garment. Secondary sources confirm that the eagle/anchor/oval buttons were made in small and large varieties (Emilio 1911; Johnson 1948; Albert 1976; Hughes and Lester 1991; Tice 1997). U.S. Navy uniform regulations in 1814 and 1841 also specify the use of small and large buttons (U.S. Navy 1814, 1841). The specimens recovered from Area A were of the small variety. For officers, the small variety were used for cuffs, sleeves, vests, and cocked hats (U.S. Navy 1841). Officers’ jackets were fastened with the large variety. For enlisted men, jackets were fastened with the small variety (Tily 1964:75).

There were four Type 21 buttons recovered from Area A. These buttons are three piece iron buttons with four eyes. The front had a depressed center and was crimped over a back disk. The center was a disk of wood that provided a tight fit between the two sides. All four specimens recovered from Area A were very poorly preserved. Only one specimen retained the wood center. The remaining three were heavily corroded fronts or backs and type was only identifiable using x-ray images. South dated these buttons to an 1837 to 1865 context. All of the Type 21 buttons were within the medium size category, measuring 17, 18, 18, and 20 mm. One study categorized these as trouser/out garment buttons (Otto 1975).

A single Type 24 button was recovered from Area A. Type 24 buttons are three piece buttons with fabric covering the front. The specimen in this sample exhibited an iron front crimped over an iron back with an iron eye. Although the fabric had deteriorated, the material and construction was consistent with South’s Type 24 description. The pressure of the back would have held the fabric in place. South recovered the Type 24 buttons from an 1837 to 1865
context. The button recovered from Area A measured 16 mm and was within the medium size category. This button was most likely a jacket or coat button.

Seven Type 25 specimens were recovered that were identical in design and construction. Each measured approximately 20 mm in diameter. South’s (1964:122) Type 25 buttons exhibited slightly domed brass fronts crimped over iron backs with iron eyes and the fronts were embossed with decorative patterns and gilded. The Type 25 buttons from Area A exhibited brass fronts that were embossed and slightly domed. Evidence of gilding was also present. The front design included a raised interior dome encircled by a depressed ring followed by a raised ring to the outside. These buttons measured 20 mm in diameter and are within the medium size category. All of these buttons were recovered from Trench 3, Feature 322 within relatively close proximity to one another. It is possible that these buttons adorned a single garment or were purchased as part of the same gross of buttons. One Type 25 button was recovered from Unit 53, where the U.S. Navy buttons were recovered, and an additional three Type 25 buttons were recovered from adjoining units.

A single Type 26 button, identified as a sporting button, was recovered from Area A. South’s Type 26 buttons were brass, 3-piece buttons with the front crimped over the back and are often embossed and gilded. The specimen recovered from Area A is decorated on the front with a finely detailed fox face and the back is stamped with a maker’s mark that reads “NEW DESIGN”. It measured 27 mm in diameter. Gilt sporting buttons were decorated with sporting subjects and peaked in popularity between 1830 and 1850 (Hughes and Lester 1991:652). Similar sporting buttons with the “NEW DESIGN” maker’s mark date to the mid-19th century (Hughes and Lester 1991:654-655). The fox face sporting button was part of a five button set and
is featured in *The Collector’s Encyclopedia of Buttons* (Luscomb 1967:186). In addition to the fox face, the set included a running fox, a boar head, two game birds, and a hunter/horse hunt scene. The large 27mm diameter is consistent with sources indicating that gilt brass sporting buttons were worn on larger dark cloth riding coats (Hughes and Lester 1991:652).

There were six indeterminate metal buttons recovered. Three of these buttons were either fronts or backs of two or three piece buttons, probably Type 24 or 25. These measured 18, 20, and 23 mm in diameter. Another iron button was destroyed during the conservation process and its type was not determined. It could have been Type 21, 24, or 25. Two pewter buttons were recovered from Area A. The first specimen was a flat disk type measuring 23 mm in diameter. It is possible that the first specimen was a Type 29 button. Type 29 buttons are flat, cast pewter buttons with wire shanks. South recovered Type 29 buttons from an 1837 to 1865 context. The second pewter specimen was heavily deformed. However, it measured approximately 20 mm in diameter and was probably domed.

Thirty Prosser buttons were recovered from Area A, accounting for 54% of the buttons in the sample. Prosser buttons, often referred to as porcelain, are high fired ceramic buttons that are glass-like in appearance. They are distinguishable by their rough and pitted surface, as opposed to the very smooth surface of glass buttons (Sprague 2002:111). Richard Prosser patented the mold process on June 17, 1840. Therefore, Prosser buttons provide a definitive *terminus post quem* of 1840.

The Prosser buttons recovered from Area A generally match South’s Type 23 buttons. These buttons were high fired white ceramic buttons with four eyes, a convex face and back, and a depressed area in the central portion of the face for the eyes (South 1964:122). Almost all of
the Type 23 buttons in South’s study were recovered from an 1837 to 1865 context. All of the buttons recovered from Area A match South’s description, besides one button that was too fragmentary to determine the number of eyes. All of the Prosser buttons from Area A were plain/undecorated, except for one specimen categorized as a piecrust button. This type of Prosser button exhibited a molded piecrust design.

The Prosser buttons recovered from Area A range in size from 9 to 15 mm in diameter. Sixteen of the Prosser buttons measured 11 mm in diameter, accounting for 53% of the total Prosser buttons recovered. The piecrust button was among those measuring 11 mm in diameter. Size frequencies are presented in Table 5.11. Size frequency of Prosser buttons at Area A are similar to those recovered by South (1964:122), which include mostly 10 and 11 mm buttons, and a limited number of 15 mm buttons. All of the Prosser buttons recovered from Area A are in the small size category. Prosser buttons were utilitarian buttons that most frequently represent shirt fasteners.

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Count</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>9mm</td>
<td>4</td>
<td>13%</td>
</tr>
<tr>
<td>10mm</td>
<td>5</td>
<td>17%</td>
</tr>
<tr>
<td>11mm</td>
<td>16</td>
<td>53%</td>
</tr>
<tr>
<td>12mm</td>
<td>2</td>
<td>7%</td>
</tr>
<tr>
<td>13mm</td>
<td>1</td>
<td>3%</td>
</tr>
<tr>
<td>14mm</td>
<td>0</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>15mm</td>
<td>2</td>
<td>7%</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>100%</td>
</tr>
</tbody>
</table>

Two facetted black glass buttons with similar geometric designs were recovered from adjoining units at Area A. The first specimen measured 20 mm in diameter and exhibited a
domed faceted front with an octagram pattern. The second specimen measured 13 mm in diameter and had a domed faceted front with a hexagram pattern. The second specimen retained part of a badly corroded iron shank that could have been a U-shaped shank, also known as a staple shank (Luscomb 1967:6). Glass buttons with staple shanks generally date to the 19th century. Both buttons are nearly identical in their general design and possibly represent part of a set that adorned the same garment. The first specimen measured 20 mm, which is within the medium size category. The second specimen measured 13 mm, which is within the small size category. Both specimens exhibit a fancy, non-utilitarian design and may have been part of a dress. The large specimen may have fastened the chest area and the small specimen may have fastened a sleeve.

The one fragmentary bone button recovered from Area A was too incomplete to define by type. Bone buttons were produced commercially during the 18th and 19th centuries and were always in abundant supply (Hughes and Lester 1991:8). They were often pierced in the middle and held in a lathe during the manufacturing process. Some were drilled with two, three, and four holes as eyes. Others, like South’s Type 20, exhibited five holes, the center hole being the mark left during manufacturing. Bone buttons with only one central hole were commonly covered with fabric. Due to the fragmentary nature of the bone specimen from Area A, it could have been any of the bone button types described. Hughes and Lester (1991:251) ascribe the two, three, four, and five hole buttons to underwear and pants. The bone button recovered from Area A measured approximately 17mm and is within the medium category. It is possible that this button was used to fasten trousers.
Hooks and eyes were the other main clothing fastener recovered from Area A, which included six hooks, eleven eyes, and two hook/eye eyelets. Hooks and eyes were used for edge-to-edge closures and were not visible on the garments they fastened. They were not necessarily exclusive to a particular type of clothing or to either sex. However, they are frequently attributed to female clothing. Female clothing fastened with hooks and eyes included dresses and bodices, while male clothing included coats and waistcoats (White 2002:306-313, 2005:73-76). Other clothing fasteners in the assemblage include a brass snap and a fastener eyelet of some type, probably the remnants of a clasp.

Eight iron buckles were recovered from the site. Six buckles were complete or partially complete, meaning that at least part of the frame was still intact. Three of the complete buckles were single framed and the outside part of the buckle served as the pin. According to the DAACS cataloging manual, this simple pin type was primarily seen on utilitarian/harness buckles (Grillo et al. 2003:12). The single framed buckles measure 22 x27 mm, 29x34 mm, and 26x31 mm. The first two were rectangular and the latter was D-shaped. All three of the single framed buckles had a single pronged tongue attached to the pin. The other three were double framed, meaning that there was a pin fixed to the central part of the frame, delineating two halves. All three were badly preserved and broken around the pin portion of the buckle. Estimating the original size of these buckles, they measured 28 x 28 mm, 44 x 36 mm, and 43 x 33 mm. The first two were D-shaped and the latter was rectangular. The pin of the D-shaped, 44x36mm buckle was oriented along the long axis and the pin of the rectangular, 43 x 33 mm buckle was oriented along the short axis. The remaining two buckles were fragmentary, one
The specimen was the pin of a double framed angular buckle and all that remained of the other fragmentary buckle was a single pronged tongue.

The eight buckles recovered could have been used for either clothing or utilitarian purposes. The most comprehensive reviews of buckles are focused on 18th century types, such as shoe and knee buckles, which are not as applicable to the 19th century (White 2005:31-50). The buckles recovered from Area A could have secured clothing such as trousers, waistcoats, jackets, and coats. They also could have secured utilitarian items such as luggage straps, spurs, or horse harnesses. As noted, it is possible that the single frame buckles were used for utilitarian purposes. The double framed buckle that measured 43x33mm exhibited a flat back, a curved/peaked front, and a light frame construction. The construction and design was not utilitarian and was probably a clothing buckle of some type. All of the buckles were characterized by iron construction and a lack of decoration.

**Footwear**

Items in the footwear subcategory included footwear fragments, leather heel lifts, iron lace hooks, leather eyelets, brass eyes/grommets, and a brass aglet. The shoe fragments included two horseshoe shaped heels that represented two separate boots or shoes. Most of the boot or shoe was missing, including the waist and toe portions, and almost the entire upper. Close examination revealed that, in addition to leather heel lifts and wood pegs, iron lasting tacks and fragments of the leather outsole, upper, and insole were still intact on both specimens.

The first specimen was horseshoe shaped and measured approximately 51 mm long and 67 mm wide. It was comprised of five heel lifts, one outsole, one upper, one insole, seven lasting tacks, and 36 wood pegs. The heel was constructed of individual layers of leather cut to the
shape of the heel and attached to the bottom of the shoe with wood pegs, known as stacked heel construction (Stevens and Ordoñez 2005:16). The wood pegs used to attach the heel passed through all three of the top layers, including the outsole, upper, and insole. The entire heel was represented, as evidenced by visible wear present on the bottom of the heel. The combined height of the five heel lifts was approximately 2 cm. Iron lasting tacks, which were approximately 6mm long, attached the upper to the insole. The outsole, upper, and insole measured 3mm, 1mm, and 0.5mm thick, respectively. An absence of stitch holes on the outsole and upper indicated that a vertical attachment method was used to join the outsole and upper, as opposed to a turn shoe or welt method (Veres 2005:90). In a vertical attachment method, wood pegs or nails pierced through and joined the outsole and upper.

The second specimen was horseshoe shaped and measured approximately 35 mm long and 68 mm wide. It was comprised of one heel lift, one outsole, one upper, one insole, six lasting tacks, and 54 wood pegs arranged in two rows. Similar to the first specimen, the absence of stitch holes on the second specimen indicated a vertical attachment method. Iron lasting tacks attached the upper to the insole. The outsole, upper, and insole measure 4 mm, 2 mm, and 1.7 mm, respectively. The second specimen has only one heel lift, which measures approximately 7mm thick. The bottom of the heel also exhibits wear.

Both of the composite footwear fragments were of wood peg construction, as opposed to sewn, indicating that they were of lower quality. Prior to the 19th century, most footwear was hand sewn, the heavier shoes welted and the lighter ones were of a turn shoe construction (Anderson 1968: 58). The use of wooden pegs became the dominant construction method after 1815 and began to decline in frequency during the 20th century (Huddleson and Watanabe.
1990:95-96). Wood peg shoes were made entirely by hand until a machine for punching the holes in the leather was introduced in the 1840s. Pegs and nails were used for heavy boots and cheaper shoes, such as brogans (Stevens and Ordoñez 2005:14). Sewn shoes were finer and more expensive, and were generally preferred to pegged shoes. It is possible that the taller heel represents that of a boot and the smaller heel represents that of a shoe, possibly a brogan. The width of the heel does not provide any specific information about the wearer.

The other footwear artifacts included heel lifts, lace hooks, footwear eyes, leather eyelets, and an aglet. The three heel lifts all retained some part of their original edge. Each appeared torn and exhibited square holes arranged around the specimen, indicating that they were pierced with wood pegs. It is possible that the individual heel lifts were part of a third specimen or that they represent evidence of repair (Veres 2005:91). The two leather eyelets are the remnants of holes that the laces passed through. The two brass eyes are similar to grommets and were used to reinforce the eyelets. The three iron lace hooks were used to fasten the laces. The brass aglet was a covering over the tip of the lace that prevented it from unraveling and allowed it to pass more easily through the eyelet.

**Maintenance and Manufacture**

Clothing items related to maintenance and manufacture included 16 straight pins, two thimbles, and a flatiron. The straight pins included 15 brass and one iron example. Two straight pins had handmade heads and the rest were either stamped or indeterminate. The length and width of the straight pins recovered from Area A were within a common sewing pin range (Beaudry 2006:24-25). However, while straight pins are most commonly associated with sewing activities, other uses included fastening clothing. One brass thimble and one iron thimble were
recovered from Area A. Both of these artifacts are associated directly with sewing activities. A flatiron was also recovered from Area A. This specimen is cast iron and the design is pointed in the front and widened to a flat back. It would have been used to press and smooth clothing and cloth. The whole flatiron was heated on a fire or in a stove. Two irons were typically used, one being heated or reheated, while the other was in use (Ewing 1984:100-101). The flatiron was recovered from Unit 46, which was within close proximity to stove parts recovered from Unit 6.

**Household/Structural**

The household/structural category included construction materials, nails and spikes, window glass, fittings and hardware, and furnishings/accessories. This group was strongly represented among the total assemblage by count, 83.1%, and weight, 91.9%. A summary of the subcategories is presented in Table 5.12.

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>Count</th>
<th>%</th>
<th>Weight</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Material</td>
<td>22,618</td>
<td>52%</td>
<td>482,967</td>
<td>92%</td>
</tr>
<tr>
<td>Nails/Spikes</td>
<td>16,063</td>
<td>37%</td>
<td>33,884.4</td>
<td>6%</td>
</tr>
<tr>
<td>Window Glass</td>
<td>4,694</td>
<td>11%</td>
<td>2,770.3</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Fitting &amp; Hardware</td>
<td>61</td>
<td>&lt;1%</td>
<td>2,776.6</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Furnishings/Accessories</td>
<td>141</td>
<td>&lt;1%</td>
<td>3,033.8</td>
<td>&lt;1%</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>43,577</td>
<td>100%</td>
<td>52,5432</td>
<td>100%</td>
</tr>
</tbody>
</table>

**Construction Material**

Construction materials in the Area A assemblage included brick, sandstone, mortar, plaster, one piece of tile, and a small amount of concrete (Table 5.13). Construction material is the largest subcategory by count, 52%, and weight, 92%. All of the large sandstone slabs, as well
as a brick pier recorded as Feature 307, were left in situ during excavation. Therefore, sandstone and brick are underrepresented in the sample.

### TABLE 5.13
CONSTRUCTION MATERIAL BY COUNT AND WEIGHT

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
<th>%</th>
<th>Weight</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick</td>
<td>19,656</td>
<td>87%</td>
<td>436,369</td>
<td>90%</td>
</tr>
<tr>
<td>Mortar/Plaster</td>
<td>n/a</td>
<td>n/a</td>
<td>19,500.7</td>
<td>4%</td>
</tr>
<tr>
<td>Sandstone</td>
<td>2,960</td>
<td>13%</td>
<td>27,078.8</td>
<td>6%</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
<td>&lt;1%</td>
<td>18.1</td>
<td>&lt;1%</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>22,618</td>
<td>100%</td>
<td>482,967</td>
<td>100%</td>
</tr>
</tbody>
</table>

Sandstone and brick were the most represented artifact types by count and weight. The structures at Area A were raised on sandstone and brick piers. Large sandstone slabs comprised the most identifiable piers. Sandstone occurs naturally in the lowland areas of the site, adjacent to Pond Creek, and was probably obtained from those nearby quarries. It was also used for constructing the core of the dam, partial foundation of the first sawmill, walls of the plunge pool, and foundations of the second sawmill and later textile mill (Phillips 1993:136-180). All of the identifiable brick was handmade, which predated 1860. No machine made brick was identified. There were five bricks identified by maker’s marks, including four “J. NORIEGA” and one “M. BONIFAY”. The “J. NORIEGA” mark represented José Noriega, whose brickyard ran from approximately 1810 to 1830 (Lazarus 1965:77-78). The “M. BONIFAY” represents Manuel Bonifay, whose brickyard ran from approximately 1807 to 1860 (Lazarus 1965:77). The widespread spatial distribution of sandstone slabs and brick concentrations suggested that multiple structures were present at Area A.
Nails and Spikes

Nails (n=16062) comprised 37% of the household/structural category by count and 6% by weight. A majority of the nails recovered were fragmentary (Table 5.14). Spikes and whole nails comprise the remainder of the subcategory. Hand wrought nails account for 9% of the total whole nails recovered from Area A. Hand wrought nails were the primary type of construction fastener used until they were replaced by cut nails during the early 19th century (Nelson 1968:8-9). Cut nails account for 86% of the whole nails recovered. Cut nails were developed originally around 1790 and had largely replaced hand wrought nails by 1830.

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
<th>%</th>
<th>Weight</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmentary Nail</td>
<td>14,918</td>
<td>93%</td>
<td>23,027.3</td>
<td>68%</td>
</tr>
<tr>
<td>Whole Nails</td>
<td>1006</td>
<td>6%</td>
<td>7,260.6</td>
<td>21%</td>
</tr>
<tr>
<td>Fragmentary Spike</td>
<td>104</td>
<td>&lt;1%</td>
<td>2,008.5</td>
<td>6%</td>
</tr>
<tr>
<td>Whole Spike</td>
<td>35</td>
<td>&lt;1%</td>
<td>1588</td>
<td>5%</td>
</tr>
<tr>
<td>Total</td>
<td>16063</td>
<td>100%</td>
<td>33884.4</td>
<td>100%</td>
</tr>
</tbody>
</table>

Whole nails and spikes were measured by pennyweight and placed into categories based on general functional attributes (Table 5.15). These functional attributes were used to make inferences about the structures that once stood at Area A. The whole nails recovered from Area A included a high percentage of larger nails, represented by Groups D and E. Group E was the most common size group, representing 12d and larger nails, which were typically used for framing, joists, rafters, and studs. The high frequency of larger nails suggests that the structures had timber or stud framed walls. It also suggested that the structure was not of jointed log construction, which would have precluded the use of such nails in great quantity (Updike 2002:66-68). The least represented groups were Group A and Group B, which included nails that
were smaller and typically used for lathing and shingles. It is possible that the structures did not have lathing for plaster walls.

**TABLE 5.15**

**DISTRIBUTION OF NAILS BY SIZE AND FUNCTION***

<table>
<thead>
<tr>
<th>Group</th>
<th>Size</th>
<th>Function</th>
<th>Count</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2d-3d</td>
<td>Lathing, Shingles</td>
<td>23</td>
<td>2%</td>
</tr>
<tr>
<td>B</td>
<td>4d-5d</td>
<td>Shingles, Shakes, Tin Roof, Lathing</td>
<td>55</td>
<td>5%</td>
</tr>
<tr>
<td>C</td>
<td>6d-7d</td>
<td>Clapboards, Wall Boards, Batten, Ceiling</td>
<td>155</td>
<td>15%</td>
</tr>
<tr>
<td>D</td>
<td>8d-10d</td>
<td>Flooring, Furring, Boarding, Siding</td>
<td>381</td>
<td>37%</td>
</tr>
<tr>
<td>E</td>
<td>12d+</td>
<td>Framing, Joists, Rafters, Studs</td>
<td>420</td>
<td>41%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>1034</td>
<td>100%</td>
</tr>
</tbody>
</table>

*Adapted from Updike 2002

**Window Glass**

Flat window glass represented 11% of the household/structural category by count (n=4694) and 1% by weight (n=2770.3). Window glass was present across Area A. There were subtle differences in the spatial distribution of window glass that may represent the presence of windows or structural perimeters. However, specific patterns were difficult to discern with certainty. Not surprisingly, a majority of the window glass was recovered from the sheet midden in Trench 3 and the midden features in Block 1. It is not possible to determine if the window glass in these units was mainly the result of discard or if it also represented the location of windows.
**Fittings and Hardware**

Fittings and hardware items recovered from Area A included a variety of door hardware parts, as well as miscellaneous hardware parts, such as nuts, bolts, washers, and screws (Table 5.16). Some of the door parts were located outside of refuse areas and within close proximity to possible structural perimeters, as defined by the alignment of piers. The nuts and bolts were large and, if not associated with the structure, could have served an industrial purpose on machinery or as cart or wagon parts.

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
<th>%</th>
<th>Weight</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Came</td>
<td>2</td>
<td>3%</td>
<td>20.9</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Doorknob (glass)</td>
<td>1</td>
<td>2%</td>
<td>17.1</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Hinge</td>
<td>16</td>
<td>26%</td>
<td>914.3</td>
<td>33%</td>
</tr>
<tr>
<td>Pintle</td>
<td>1</td>
<td>2%</td>
<td>161.9</td>
<td>6%</td>
</tr>
<tr>
<td>Latch</td>
<td>7</td>
<td>11%</td>
<td>265.2</td>
<td>10%</td>
</tr>
<tr>
<td>Screen</td>
<td>n/a</td>
<td>n/a</td>
<td>13.2</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Bolt</td>
<td>6</td>
<td>10%</td>
<td>274.1</td>
<td>10%</td>
</tr>
<tr>
<td>Nut</td>
<td>8</td>
<td>13%</td>
<td>883.4</td>
<td>32%</td>
</tr>
<tr>
<td>Washer</td>
<td>8</td>
<td>13%</td>
<td>44.8</td>
<td>2%</td>
</tr>
<tr>
<td>Hardware Ring</td>
<td>6</td>
<td>10%</td>
<td>149</td>
<td>5%</td>
</tr>
<tr>
<td>Screw</td>
<td>4</td>
<td>7%</td>
<td>21.4</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Screw Eye</td>
<td>2</td>
<td>3%</td>
<td>11.3</td>
<td>&lt;1%</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>61</td>
<td>100%</td>
<td>2776.6</td>
<td>100%</td>
</tr>
</tbody>
</table>
**Furnishings and Accessories**

The furnishings/accessories subcategory represented a very small portion of the household/structural group. This subcategory included items related to furniture, decoration, heating, and lighting. Items are summarized in Table 5.17. It is possible that the tacks were part of horse harness hardware, as opposed to furniture (Hume 1969:237-242). The two large stove parts were both recovered from Feature 204 in Unit 6 and it is possible that the stove was supported underneath the structure by the set of bricks identified as Feature 304.

**TABLE 5.17**
FURNISHINGS AND ACCESSORIES BY COUNT AND WEIGHT

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
<th>%</th>
<th>Weight</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drawer Pull</td>
<td>15</td>
<td>11%</td>
<td>14.8</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Lock Plate</td>
<td>1</td>
<td>&lt;1%</td>
<td>1.1</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Tack</td>
<td>38</td>
<td>27%</td>
<td>15.2</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Lamp Chimney</td>
<td>8</td>
<td>6%</td>
<td>8</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Lamp Shade</td>
<td>5</td>
<td>4%</td>
<td>5.5</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Carbon Rod</td>
<td>2</td>
<td>1%</td>
<td>1.8</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Stove</td>
<td>2</td>
<td>1%</td>
<td>2,883.9</td>
<td>95%</td>
</tr>
<tr>
<td>Vase</td>
<td>17</td>
<td>12%</td>
<td>84.1</td>
<td>3%</td>
</tr>
<tr>
<td>Mirror Glass</td>
<td>53</td>
<td>38%</td>
<td>19.4</td>
<td>&lt;1%</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>141</td>
<td>100%</td>
<td>3033.8</td>
<td>100%</td>
</tr>
</tbody>
</table>
Personal

The personal category included artifacts that were owned typically by a single individual. Subcategories included medicinal, cosmetic, decorative, recreational, and communication (Table 5.18). The recreational subcategory was the most represented in the sample, which accounted for 87% by count and 67% by weight.

### TABLE 5.18
PERSONAL CATEGORY BY SUBCATEGORY, TYPE, AND COUNT

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>Type</th>
<th>Count</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicinal</td>
<td>Pharmaceutical Bottle</td>
<td>9</td>
<td>3%</td>
</tr>
<tr>
<td>Medicinal</td>
<td>Syringe Plunger(?)</td>
<td>1</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Cosmetic</td>
<td>Comb</td>
<td>3</td>
<td>1%</td>
</tr>
<tr>
<td>Cosmetic</td>
<td>Razor</td>
<td>1</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Decorative</td>
<td>Earring</td>
<td>1</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Decorative</td>
<td>Glass Bead</td>
<td>3</td>
<td>1%</td>
</tr>
<tr>
<td>Decorative</td>
<td>Jewelry Part</td>
<td>6</td>
<td>2%</td>
</tr>
<tr>
<td>Decorative</td>
<td>Necklace Chain</td>
<td>1</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Recreational</td>
<td>Tobacco Pipe</td>
<td>101</td>
<td>37%</td>
</tr>
<tr>
<td>Recreational</td>
<td>Snuff Bottle</td>
<td>127</td>
<td>47%</td>
</tr>
<tr>
<td>Recreational</td>
<td>Marble</td>
<td>8</td>
<td>3%</td>
</tr>
<tr>
<td>Communication</td>
<td>Ink Bottle</td>
<td>1</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Communication</td>
<td>Slate Fragment</td>
<td>9</td>
<td>3%</td>
</tr>
<tr>
<td>Communication</td>
<td>Pencil Lead</td>
<td>1</td>
<td>&lt;1%</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td>272</td>
<td>100%</td>
</tr>
</tbody>
</table>

**Medicinal**

The medicinal subcategory included artifacts with healing or restorative properties. Medicinal artifacts recovered from Area A included pharmaceutical bottles and one fragment of a possible syringe plunger. There were three pharmaceutical bottles embossed with labels. Two fragments exhibit embossing that, if complete, would have read: ACT OF CONGRESS//R.R.R./RADWAY & Co/NEW YORK//ENTD. ACCORD. TO. Radway & Company was established in the mid-1840s in New York City and copyrighted the initials
“R.R.R.” in 1852 (Wilson 1971:134). The R.R.R stands for Radway’s Ready Remedy, which was marketed as a painkiller and nerve tonic. Another embossed example is represented by three fragments of a curved aqua bottle that, if complete, would have read: NOWILL’S. PECT/ORAL HONEY/OF LIVERWORT (Fike 1987:199). The label stands for Nowill’s Pectoral Honey of Liverwort, which was prepared by D. Nowill of New York, NY. This medicine was used to treat symptoms of consumption, known today as pulmonary tuberculosis (Baldwin 1973:363). It was advertised in A.E. Wright’s Commercial Directory as early as 1840. Another specimen was a complete rectangular aqua colored bottle that read: BARRY’S//TRICOPHEROUS/FOR THE SKIN/AND HAIR//NEW YORK//DIRECTIONS/IN THE/PAMPHLET. Alexander Barry began promoting the tricopherous around 1848, claiming it had been established by his father in 1801 (Wilson 1971:22, 106). The tricopherous was a topical ointment used to treat hair loss. The top of a possible glass syringe plunger was also recovered and probably dates to the late 19th or early 20th century.

**Cosmetic**

The cosmetic subcategory included artifacts related to grooming or for improving a person’s appearance. Cosmetic artifacts included three plastic comb fragments and one straight razor blade fragment. The three plastic comb fragments represented two separate combs. These specimens were either vulcanized rubber or plastic. The two fragments that mend were impressed “St. Regis,” which could stand for the St. Regis Paper Company who operated in Pensacola, Florida, during the 1950s. All three comb specimens were recovered within the first 10cm below the surface. The razor fragment is concave on one side and most likely represents the remains of a straight razor typically used for shaving.
Decorative

The decorative subcategory included jewelry artifacts related to decorating or embellishing the body. Decorative items recovered from Area A included one earring, three glass beads, five jewelry parts, and a necklace chain. The earring is a brass hoop that was possibly gold plated. It measured 18mm in diameter. The glass beads included one blue seed bead, one black seed bead, and one black cylindrical bead. The black cylindrical bead is broken at both ends. The jewelry parts include six brass specimens, representing five individuals. All are possibly links of some type, three being similar or identical in design. The necklace chain, counted as one specimen, is composed of very small brass or copper balls that were originally linked to one another.

Recreational

The recreational subcategory included items used specifically for enjoyment, amusement, or pleasure. Recreational artifacts recovered from Area A included tobacco pipes, snuff bottles, and marbles. Within the personal category, the recreational subcategory is the most represented. Recreational artifacts are summarized in Table 5.19.

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
<th>%</th>
<th>Weight</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse Earthenware Pipe</td>
<td>9</td>
<td>4%</td>
<td>18</td>
<td>3%</td>
</tr>
<tr>
<td>Stoneware Pipe</td>
<td>9</td>
<td>4%</td>
<td>24.9</td>
<td>4%</td>
</tr>
<tr>
<td>Kaolin Pipe</td>
<td>83</td>
<td>35%</td>
<td>99.7</td>
<td>15%</td>
</tr>
<tr>
<td>Snuff Bottle</td>
<td>127</td>
<td>54%</td>
<td>500.6</td>
<td>76%</td>
</tr>
<tr>
<td>Marble</td>
<td>8</td>
<td>3%</td>
<td>13</td>
<td>2%</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>236</td>
<td>100%</td>
<td>656.2</td>
<td>100%</td>
</tr>
</tbody>
</table>

108
Tobacco pipes recovered from Area A included kaolin, coarse earthenware, and stoneware specimens. The pipe decorations, paste, and surface treatments were relatively diverse. The minimum number of pipes recovered from Area A is 18 pipes. Based on intact bowl-stem junction fragments, the minimum number of kaolin pipes was nine. An additional kaolin pipe was identified by its distinct paste and design, increasing the minimum number to 10. The minimum number of stoneware and coarse earthenware pipes was determined by counting intact bowl-stem junction fragments and by comparing color, thickness, glaze, shape, and style. The minimum number of stoneware/coarse earthenware pipes was eight.

Most of the kaolin pipes recovered from Area A exhibit a typical 19th century shape and design. Decorative types included cockle and frond, alternating cockles, fully cockled, and cockle and oval, among others (Pfeiffer 1982). One plain kaolin bowl fragment exhibited a “D” in relief centered on the back of the bowl. This maker’s mark could stand for Peter Dorni, a popular French pipe maker in operation from approximately 1850 to 1880. However, his pipes were widely imitated by other manufacturers (Humphrey 1969:15-16). It may also represent a variety of the common “TD” maker’s mark, which is frequently attributed to Thomas Dormer, c.1750-1770. However, the “TD” mark became generic and was widely imitated during the 19th century (De Vore and Hunt 1993:33). Another identifiable kaolin specimen was a reed stem elbow pipe that closely resembled the shape and design of stoneware/coarse earthenware pipes in the assemblage, which indicated that it dates to the mid-19th century. Another specimen is a bowl fragment made of a particularly poor white body that consists of a molded raised rim and vertical wavy lines in relief. This specimen probably represents an anthropomorphic pipe and may have been produced by American or German pipe manufacturers during the mid-19th
century (Pfeiffer et al. 2007). The origin and exact age of the other white clay pipes was not determined.

The stoneware and coarse earthenware specimens were all reed stem pipes, also known as elbow pipes or stub stem pipes, which were made for use with an insertable stem. Most of the specimens in the Area A assemblage were produced by pipe makers in Point Pleasant, Ohio, who operated from the 1840s until around 1890, or by pipe makers in Pamplin, Virginia, who operated from the mid-19th century to the early 20th century (Sudbury 1979).

The coarse earthenware pipes ranged in paste, surface treatment, and design. One was an undecorated and unglazed orange/tan specimen that closely resembled those identified by Sudbury (1979:309). Similar specimens were recovered archaeologically from the steamboat Bertrand, which sank on the Missouri River in 1865, and were identified positively as Pamplin pipes (Pfeiffer 1982:223). Sudbury (1979:261) identified Point Pleasant pipes of a similar style. Another specimen was an unglazed red terra cotta stem similar to that of the Ringed Elbow types identified by Pfeiffer (1982:185-186). Lacking the entire bowl, it is difficult to determine whether it was Point Pleasant or Pamplin. Another specimen was an unglazed red, ribbed bowl fragment, similar to both Pamplin and Point Pleasant pipes.

Two coarse earthenware bowl fragments from different pipes exhibited raised molded patterns and a green lead glaze. Both of these specimens were part of anthropomorphic pipes, or “face pipes,” that depict human heads on the bowl. One of the bowl fragments matched exactly with a more complete pipe recovered from the Five Points excavations in New York (Reckner and Dallal 2000:IX, plate 4, 24). Figure 5.3 displays the Five Points bowl fragment and the matching fragment recovered from Area A. The Five Points specimen was a reed stem pipe that
consisted of a partially complete bowl and fragmentary shank and “appears to be molded in the form of a military figure-head, a “turk,” or perhaps an African” (Reckner and Dallal 2000:24). Although anthropomorphic pipes were manufactured at Point Pleasant, the green glaze of the Area A specimens is indicative of German anthropomorphic reed stem pipes that were made specifically for export to America during the mid-19th century (Pfeiffer et al. 2007:6). The Five Points specimen was also attributed to a possible German or French origin.

![Matching anthropomorphic pipes from Five Points and Area A excavations](image)


The stoneware pipes ranged in paste and design. One specimen was a nearly complete brown salt glazed pipe with a raised ring around the mouth of the stem and near the rim of the bowl. It was very similar to a brown salt glazed specimen identified by Pfeiffer as Point Pleasant and excavated from an 1853 to 1859 context. It was also very similar to three specimens
identified as Point Pleasant by Sudbury (1979:260-262). The other distinctive stoneware specimen was a glazed brown stem and partial bowl fragment that had parallel ribbed lines extending around the pipe and from the lip of the stem to the rim of the bowl. This pipe was similar to both Point Pleasant and Pamplin specimens identified by Sudbury (1979:259, 303). Another specimen was a plain grey/brown salt glazed pipe bowl fragment that exhibited no distinctive design characteristics.

There were 127 snuff bottle fragments that weighed a total of 500.6 g. Snuff was powdered tobacco that was inhaled through the nostrils or taken orally by rubbing on the gums. Horizontally, snuff bottles are rectangular with flat chamfered corners and, vertically, they are short with no neck. All are dark olive green in color. Although they could have been used for other purposes, they are typically attributed to tobacco snuff. It was difficult to estimate minimum number of individuals, as most specimens were very fragmentary, though two specimens were partially complete.

Glass marbles were the only identifiable toy artifacts recovered from Area A. The age of these marbles is uncertain and they may date after the main occupation of the site. Based on decoration, the fragments recovered represent at least three separate marbles. Handmade glass marbles were produced commercially in Germany and exported to the United States starting around 1852 and the marble making machine was introduced in 1901. Handmade marbles were typically distinguished from machine-made marbles by the presence of one or two pontil marks. The most common handmade marble design is a spiral of colored ribbons and clear glass. Early machine-made marbles were generally opaque (Randall 1971:104-105). Decorations in the sample included one plain clear green marble, one clear green marble with red and white spiral
ribbons, and a clear aqua marble with blue, white, and yellow spiral ribbons. None of the specimens were complete enough to accurately determine age.

**Communication**

The communication subcategory included artifacts related to the exchange of information through writing. Artifacts recovered from Area A included an ink bottle, slate fragments, and a single fragment of pencil lead. The glass ink bottle was a green colored conical six sided bottle, which is categorized as an umbrella ink. These types of bottles were manufactured by at least 1840 and were designed to minimize tipping when pens or quills were dipped into the ink. The pontil scar indicated that this specimen probably dates prior to the 1860s (Lindsey 2010). The nine slate fragments recovered from Area A possibly represent the remnants of a slate writing tablet.

**Labor**

The labor category included artifacts related to the performance of physical work. Subcategories included stable and barn, tools, industrial, and metalworking. The industrial subcategory was the most represented by count. Labor subcategories are summarized by count and weight in Table 5.20.

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>Count</th>
<th>%</th>
<th>Weight</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable &amp; Barn</td>
<td>3</td>
<td>9%</td>
<td>179.5</td>
<td>8%</td>
</tr>
<tr>
<td>Tools</td>
<td>12</td>
<td>36%</td>
<td>995.4</td>
<td>44%</td>
</tr>
<tr>
<td>Industrial</td>
<td>17</td>
<td>52%</td>
<td>295.4</td>
<td>13%</td>
</tr>
<tr>
<td>Metalworking</td>
<td>1</td>
<td>3%</td>
<td>775.5</td>
<td>35%</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>33</strong></td>
<td><strong>100%</strong></td>
<td>2245.8</td>
<td><strong>100%</strong></td>
</tr>
</tbody>
</table>
Stable and Barn

The stable and barn subcategory included one complete stirrup, one snaffle bit fragment, and a fragment of fence wire. The saddle stirrup measured 13.1 cm tall and 12 cm wide. A leather strap would have passed through the loop at the top of the stirrup, fastening it to the saddle fender and the rest of the saddle. The snaffle bit fragment recovered was one half of a single jointed mouthpiece, which was part of the bridle. The specimen would have been attached to an identical piece on one side and a ring on the other. The ring attached the mouthpiece to the rest of the bridle. The specimen measured 10.3 cm in length.

Tools

There were nine tool fragments recovered from Area A that represented a variety of functions. The miscellaneous tools included blade fragments, tool handle fragments, and chain fragments. There were two blade fragments recovered from Area A. Both are flat and measure around 4 cm in width. These were part of larger blades of an unknown type. Three tool handle fragments were recovered. One handle was made of a thin iron rod in the center that was hooked at the bottom, which prevented it from sliding out of the wooden handle. It was encased by two wooden handle pieces, one on each side. The other two specimens were similar hooked iron rods without the preserved wooden handle fragments. All were broken above the handle. The chain fragments were large and likely associated with a work activity requiring strong chain, such as dragging timber or pulling a cart.

The identifiable tools with specific functions included a claw hammer, a triangular file, and a fire rake. The hammer head fragment is part of a claw hammer and is broken in the middle at the eye where the handle would insert into the head. Claw hammers were particularly useful
for building construction and pulling nails. However, they were used in a variety of activities. The triangular three sided file measured 14 cm long and 1 cm wide. This type of file would have been useful for sharpening teeth on saw blades. Although, it could have been used to file or sharpen a variety of items. The fire rake was a long iron rod that was hooked on one end. It measured approximately 86 cm long and 10 mm wide. It would have been used in conjunction with a stove, fireplace, or open fire to arrange fuel and other objects in the fire. The fire rake could have been related to activities associated with the stove at Area A. It was recovered from Unit 51, which is near Unit 6 where the stove fragments and associated features were located.

An item tentatively identified as a bark hack was also recovered from Area A. The possible bark hack is iron and has a straight shank and a flat triangular head that is hooked downwards. The shank and top of the head were forged as one piece and the bottom part, possibly a blade, was riveted to the head. This specimen could also represent the end of a common garden hoe. If it was a bark hack, it would have been used to extract gum from pine trees, which was used to produce naval stores such as pitch, tar, and turpentine. Although naval stores production took place in West Florida during the antebellum period, the industry boomed from around 1870 until 1930 (Martinkovic 2000:26-27).

**Industrial**

The industrial subcategory included two cotter pins, eight rivets, two shuttle tips, three spindle fragments, a possible spool, and a possible bale seal. Although the cotter pins and rivets could have been used for a variety of purposes, they were included in the industrial subcategory because identical specimens were recovered from the textile/lumber mill excavations in the early 1990s. The other industrial items share a direct association with the industrial activities at
Arcadia Mill. Figure 5.4 displays cotter pins, spindle fragments, brass rivets, and shuttle tips recovered from Area A.

FIGURE 5.5. Assorted industrial artifacts from Area A matching those recovered from the second sawmill/textile mill excavations. A. Cotter Pins, (top) 11B-4313-038, (bottom) 11B-4047-067; B. Spindle Fragments, (left) 11B-4055-014, (center) 11B-4304-025, and (right) 11B-4304-025; C. Brass Rivets, (top) 11B-4057-033, (center) 11B-4143-073, (bottom) 11B-4143-073; D. Shuttle Tips, (top) 10V-3017-021 and (bottom) 11B-4057-042. Image by author, 2014.

Two cotter pins, which served as metal fasteners, were recovered from Area A. Both specimens were iron and measured approximately 14 cm long. The lower section is composed of two prongs that split apart from one another and were used to hold the pin in place. The top end of the pin is an irregular hexagonal shape with a pierced hole on one side that extends outward past the width of the prongs. The hole could have been used to attach the cotter pin to one of the objects being fastened. Given their large size, it is possible that the cotter pins were intended for
use on machinery or for transportation. Transportation might include fastening a cart to a draft animal. At least one identical specimen was recovered from the textile/lumber mill excavations (Phillips 1993:116). However, the specimen was identified as an indeterminate machine part and no descriptive information was provided.

Eight brass rivets were recovered from Area A. They were composed of the rivet and washer. This type of rivet would have been pushed through a punched hole in leather or fabric, the washer was placed around the shank, and a tool was used to flatten the top of the shank to hold the washer in place. The rivets recovered from Area A had a flat circular head that measured between 11 and 12 mm wide and a shank that measured between 4 and 7 mm wide. The washers measured around 11 mm wide. Two specimens were missing the washer. One of these specimens appeared used and damaged because part of the rivet head was broken and the top of the shank was marked where the washer was attached. The other specimen appears unused. The textile/lumber mill excavations recovered a total of 259 brass rivets (Phillips 1993:119, 121). They were interpreted as having been used to fasten the leather belts for pulleys.

The two shuttle tips and three spindle fragments recovered from Area A were associated directly with the textile mill. Shuttle tips were iron tips attached to both ends of powerloom shuttles. Their purpose was to provide smooth movement of the shuttle and protect the wood body of the shuttle from the picking stick (Phillips 1993:126). The cone-shaped top of the first specimen measured 16 mm wide and 16 mm long. The bottom is composed of a solid rod that measures 6 mm in diameter. The top of the second specimen measured 17 mm wide and 17 mm long. The bottom is composed of a solid rod that measured 7 mm in diameter. The textile/lumber mill excavations produced a total of 26 shuttle tips identical to those recovered from Area A
(Phillips 1993:105, 126). Three spindle fragments were recovered from Area A. The spindle was part of the spinning frame (Phillips 1993:126). The spindle fragments measured 5.7, 5.6, and 5.4 cm in length and 6, 5, and 6 mm in diameter, respectively. All three specimens exhibit a cone-shaped point at the top. The textile/lumber mill excavations recovered a total of 174 spindle fragments identical to those recovered from Area A (Phillips 1993:126, 127).

A possible spool and bale seal are the final two artifacts in the industrial subcategory. The spool is composed of a solid iron center rod and two flat circular ends. The spool was approximately 10 cm long and the two end were approximately 1.4 cm in diameter. It is possible that this specimen represents something other than a spool because its center is not hollow. The lead seal was a flat circular lead object with a rough surface that may have originally been impressed with information. This item could have been attached to bales of cloth that denoted various types of information about the product (Hume 1969:269).

**Metalworking**

The metalworking subcategory includes a single specimen that is characteristic of slag derived from a blacksmith’s forge. The specimen was bowl shaped, measured 12 cm in diameter, and weighed 775.5 g. It was very dense and composed partially of iron. In a smithing context, slag is defined as “the mixture of metal impurities, scale, and fuel impurities that collect in the bottom of the fire during forging” (Light 2007:141). Forges with side blast tuyeres had sand firebeds in which charcoal fires were built and the slag that accumulated in the depression would take on a bowl shape (Light 1984, 1987:660-663). This type of forge existed prior to about 1850.
Nonspecific

The nonspecific category included identifiable items that were too general to associate with a specific functional category. Subcategories include miscellaneous hardware, container, and fuel. The nonspecific category is summarized in Table 5.21.

TABLE 5.21
NONSPECIFIC CATEGORY BY COUNT AND WEIGHT

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>Type</th>
<th>Count</th>
<th>%</th>
<th>Weight</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misc. Hardware</td>
<td>Spring</td>
<td>1</td>
<td>&lt;1%</td>
<td>45</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Misc. Hardware</td>
<td>Gear</td>
<td>3</td>
<td>3%</td>
<td>3.2</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Misc. Hardware</td>
<td>Strap</td>
<td>55</td>
<td>52%</td>
<td>654.2</td>
<td>6%</td>
</tr>
<tr>
<td>Misc. Hardware</td>
<td>Wire</td>
<td>19</td>
<td>18%</td>
<td>179.5</td>
<td>2%</td>
</tr>
<tr>
<td>Misc. Hardware</td>
<td>Handle</td>
<td>11</td>
<td>10%</td>
<td>181</td>
<td>2%</td>
</tr>
<tr>
<td>Misc. Hardware</td>
<td>Unid. Part</td>
<td>14</td>
<td>13%</td>
<td>1,325.5</td>
<td>13%</td>
</tr>
<tr>
<td>Container</td>
<td>Barrel Band</td>
<td>3</td>
<td>3%</td>
<td>54</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Container</td>
<td>Container</td>
<td>n/a</td>
<td>n/a</td>
<td>1,522.7</td>
<td>15%</td>
</tr>
<tr>
<td>Fuel</td>
<td>Cinder/Slag</td>
<td>n/a</td>
<td>n/a</td>
<td>243.4</td>
<td>2%</td>
</tr>
<tr>
<td>Fuel</td>
<td>Carb. Wood</td>
<td>n/a</td>
<td>n/a</td>
<td>6,050.8</td>
<td>59%</td>
</tr>
<tr>
<td>Fuel</td>
<td>Coal</td>
<td>n/a</td>
<td>n/a</td>
<td>3.3</td>
<td>&lt;1%</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td>106</td>
<td>100%</td>
<td>10,262.6</td>
<td>100%</td>
</tr>
</tbody>
</table>

Miscellaneous Hardware

Miscellaneous hardware items recovered from Area A represented a variety of items that were not attributable to specific functions. These items included a spring, small gears, wire, handles, straps, and unidentified parts. The straps and handles could have been attached to containers, luggage, doors, etc. However, it was difficult to determine. The unidentified parts could have been associated with a variety of functions, including industry or transportation.
**Container**

The container subcategory included barrel band fragments and various unidentified metal container fragments. The three barrel band fragments recovered from Area A would have held wooden barrels or buckets intact. Container fragments weighed a total of 1,576.7 g and are not represented by count, as the fragments were numerous and not attributable to any particular type of container. Container fragments could have come from a variety of containers, including kitchenware and utilitarian items.

**Fuel**

The fuel subcategory included cinder/slag, carbonized wood, and coal. Count was not recorded, as all three artifact types were too small and numerous to count. There was 243.4 g of cinder/slag recovered from Area A. Most of it is comprised of small porous carbonized fragments that were the byproduct of burning. Some fragments were heavier and could represent slag from metalworking. There was 6,050.8 g of carbonized wood recovered from Area A. Almost a quarter of the carbonized wood was recovered from Unit 6, Feature 204 and another 17% from Unit 12. A minimal amount of coal was recovered from Area A.
The unidentified category included artifacts that were either unidentified artifacts or were too fragmentary to accurately group into a functional subcategory in the nonspecific category.

The unidentified category is summarized in Table 5.22. Artifacts were separated by artifact type and material.

### TABLE 5.22
UNIDENTIFIED CATEGORY BY COUNT AND WEIGHT

<table>
<thead>
<tr>
<th>Artifact Type</th>
<th>Material</th>
<th>Count</th>
<th>%</th>
<th>Weight</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indeterminate Ceramic</td>
<td>Ceramic</td>
<td>6</td>
<td>&lt;1%</td>
<td>4.6</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Clay Ball</td>
<td>Ceramic</td>
<td>3</td>
<td>&lt;1%</td>
<td>88.9</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Fired Clay</td>
<td>Clay</td>
<td>n/a</td>
<td>n/a</td>
<td>2,694</td>
<td>23%</td>
</tr>
<tr>
<td>Wood</td>
<td>Fauna</td>
<td>n/a</td>
<td>n/a</td>
<td>79.5</td>
<td>1%</td>
</tr>
<tr>
<td>Other Glass</td>
<td>Glass</td>
<td>2</td>
<td>&lt;1%</td>
<td>12.3</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Glass Rod</td>
<td>Glass</td>
<td>1</td>
<td>&lt;1%</td>
<td>0.1</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Indeterminate Glass</td>
<td>Glass</td>
<td>3,365</td>
<td>91%</td>
<td>1,415.9</td>
<td>12%</td>
</tr>
<tr>
<td>Very Thin Glass</td>
<td>Glass</td>
<td>157</td>
<td>4%</td>
<td>20.3</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>Metal Object Indeterminate</td>
<td>Metal</td>
<td>170</td>
<td>5%</td>
<td>1,351.6</td>
<td>12%</td>
</tr>
<tr>
<td>Metal Fragments</td>
<td>Metal</td>
<td>n/a</td>
<td>n/a</td>
<td>3,386.1</td>
<td>29%</td>
</tr>
<tr>
<td>Flat Metal</td>
<td>Metal</td>
<td>n/a</td>
<td>n/a</td>
<td>557.1</td>
<td>5%</td>
</tr>
<tr>
<td>Metal Rod</td>
<td>Metal</td>
<td>2</td>
<td>&lt;1%</td>
<td>140.8</td>
<td>1%</td>
</tr>
<tr>
<td>Metal Plate</td>
<td>Metal</td>
<td>2</td>
<td>&lt;1%</td>
<td>1,959.6</td>
<td>17%</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td>3,708</td>
<td>100%</td>
<td>11,710.8</td>
<td>100%</td>
</tr>
</tbody>
</table>
CHAPTER VI
DISCUSSION AND CONCLUSION

Discussion

The archaeological data indicate that Area A was occupied during the 1828-1840 period and the 1845-1855 period, that both male and females were present, and that the occupants were of lower economic status. Combined with historical results, the data suggest that Area A was occupied by part of the male slave population that labored at the mill during the 1828-1840 period and was occupied by another group of slaves during the 1845-1855 period; possibly a distinct group of slave families identified in census and probate records.

Chronology

The archaeological assemblage was analyzed to determine the chronological position of Area A within the history of Arcadia Mill, as no historical data was available. Diagnostic artifacts suggest that Area A was occupied primarily during the mid-19th century, specifically when Arcadia Mill was in operation from around 1828 to 1855. Artifacts in the assemblage that date to this period include pearlware, whiteware, yellowware, Alkaline glazed stoneware, percussion caps, buttons, bricks, and tobacco pipes, among others. The data suggest that Area A was first occupied during the 1828 to 1840 period, as the assemblage includes diagnostic US Navy buttons, handwrought nails, creamware, pearlware, and early transfer printed wares. However, time lag in the acquisition, curation, use, and disposal of these artifacts makes it difficult to determine an exact time.

The data strongly suggest that Area A was occupied during the 1845-1855 period. A variety of artifacts date specifically to this period, including a flow blue transfer printed plate...
(1844+), a green and red colored transfer printed plate (1840+), yellowware (1840+), Prosser buttons (1840+), pharmaceutical bottles (1840+), Point Pleasant and Pamplin pipes (1840+), an ink bottle (1840-1860), and industrial artifacts from the textile mill (1845-1855), including shuttle tips and spindle fragments.

**Occupants and Ethnicity**

Historical research indicates that white owners, white supervisors, and African American slaves were involved at the site during both periods of industrial activity. Although there was no specific historical information identified about Area A, historical results show that the list of possible occupants is very small. It is generally acknowledged that Ezekiel Simpson resided in the southern uplands, although the other owners may not have maintained residences at the site. In addition, there were several white supervisors at Arcadia during both periods. However, these individuals numbered very few, perhaps less than four or five. While it is possible that any of these white individuals occupied Area A, the likely candidates were members of the large African American slave population.

Results suggest that Area A was occupied during the 1828-1840 period by male slaves who labored for the sawmill. Based on demographic data, most households at Arcadia were comprised of all males during this period. Prior to July 1836, the population at Arcadia included up to 15 or more male slaves who labored in the first sawmill, which operated two runs of saws, a grist mill, and a blacksmith’s shop. The mill was producing around 250,000 board ft. of lumber per year during this early period. Names of these slaves include: Andrew, Harman, Zeb, Allen, Daniel, Simon, Charles, Peter, Dick, Aaron, Jackson, Isaac, Jack, Brancy, Ben, and George. Additional slaves may have been present from 1828 to 1836, but there is no direct evidence.
Between November 1836 and January 1839, the owners purchased an additional 17 prime age male slaves. Some of their names included: Moses, Joe, Albert, Peter, Joe Haynes, Joe Ballard, Ned Hopkins, George Henry, Greensbury Thomas, Charles Fields, John Bird, Andrew Williams, and Henry Ambrose. During this later period, the first sawmill included a gang of saws, two single saws, two planing machines, and a circular saw. The company had also built a second mill downstream that included two single saws, a lathing machine, and a grist mill. By 1840, the mill was producing around 900,000 board ft. of lumber per year and employed 37 adult male slaves. Results indicate that the male slave population was comprised of both skilled and unskilled slaves. Around 1840, Forsyth and Simpson relocated the sawmill operation to the Blackwater River. At least 17 of Forsyth’s male slaves remained in his possession until he died in 1855.

Results indicate that Area A was occupied again by a distinct group of slave families during the 1845-1855 period. In contrast with the previous period, most of the slave population at Arcadia was comprised of female slaves who labored at the textile mill. However, it is unlikely that these slaves were the group that occupied Area A, as many of the female slaves lived in sex-specific households that were probably located closer to the textile mill where they labored.

Historical documents show that Joseph Forsyth owned several slave families, comprised of at least 19 individuals, which lived at Arcadia Mill during this period. In total, this group included: 5 young children; 3 children, 10-12 years of age; 1 female, 14 years of age; 4 males, 25-55 years of age; and 6 females, 25-45 years of age. In the 1850 census, these individuals were recorded separately from the main population at Arcadia, indicating they were a spatially distinct
group. Out of 110 slaves at Arcadia, this group included the three oldest males, 45, 45, and 55 years of age, and three oldest females, 35, 45, and 45 years of age. Among these individuals, at least one male slave had labored previously at the sawmill during the 1828-1836 period. At least two of the female slaves had also been under his ownership since the 1830s. Information from the 1850 slave schedules and 1855 slave ledger suggest that these 19 slaves were the group that occupied Area A during the 1845-1855 period.

As slaves owned by Forsyth, and not part of the corporate stock, these slaves may have received preferential treatment. As such, Forsyth may have allowed them to cohabitate and occupy the slave quarters he had constructed previously for the sawmill slaves. Further, as elders and veterans of the old sawmill, some of these slaves may have held an elevated, or different, social status among the owners and/or within the slave community.

**Landscape**

Spatial data suggest that Area A was positioned strategically to facilitate easy access to the sawmill. Forsyth and Simpson may have instituted spatial principles similar to those of agricultural plantations, which emphasized efficiency and productivity. Slave owners often built slave quarters within close proximity of work sites primarily to reduce travel time. For example, field hands often lived near the fields, sometimes at a large distance from the owner’s house, and the domestic slaves lived closer to the owner’s house (Orser and Nekola 1985). Area A is located a great distance from the Simpson residence in the southern uplands and within easy access to the first sawmill and interior pine forests. The 15 ft. dam links Area A to the first sawmill, which are only separated by 230 m. Slaves would have travelled south along the dam and arrived directly at the first sawmill. In addition, as Sams (2013:159-160) noted, an historic road bed
passes to the north of Area A and likely extends to Pond Creek near the other mill. Therefore, it appears that Area A was positioned to facilitate access to the first sawmill and a second route may have been constructed to access the other sawmill, which was later replaced by the textile mill. In addition, Area A and the first sawmill were both located on the north side of Pond Creek, eliminating the need for a creek crossing and, as noted by Sams (2013:160), was closer to the interior pine forests.

**Foodways**

Historical sources indicate that food was both provided by owners and raised by the slaves at Arcadia. Archaeological research revealed that the slaves at Area A were also engaged in food procurement through hunting and fishing, as well as food preparation, consumption, and storage. As an indicator of their lower economic status, the material culture also suggests that the slaves at Area A did not have access to the finest or most expensive ceramics.

Firearms and fishing artifacts show that the slaves at Area A were engaged in hunting and fishing to supplement their diets along with the vegetables and livestock they raised on their own. Artifacts such as gun furniture, gunflints, percussion caps, bird and buckshot, and a harpoon/gig all point to hunting and fishing activities. The firearms sample is strongly represented by birdshot, which suggests that the slaves at Area A were engaged in hunting small game. In addition, Area A was located near the banks of a 62 acre millpond, which would have provided ample opportunities for fishing and frog gigging. The gig recovered from Area A suggests that the slave population exploited such resources. Unfortunately, the sample does not include a significant amount of faunal remains to determine the types of wild animals consumed. Future research should consider vessel form by frequency, which has been used on plantation
sites to infer differences in cooking methods, such as stewing and roasting (Otto 1977; Adams and Boling 1989). Variation in vessel forms has also been used to differentiate between different status groups and would be useful in future studies at Area A and other residential areas at Arcadia (Adams and Boling 1989).

It is not surprising that slaves at Arcadia were engaged in procuring wild game. It was economical for masters to allow slaves to supplement their diets. In addition to historical accounts, firearms and fishing gear are frequently recovered from African American slave sites confirming that slaves commonly had access to firearms (Reitz et al. 1985). Specific accounts from West Florida also indicate that local slaves carried firearms (Pensacola Gazette 1844; Lewis 1936:48). As Rucker (1990:597) states, “blacks and their white masters sometimes went on festive forays into the woods in search of opossums or raccoons.” Phillips (1918:314) also mentions that such outings were a common occurrence in the Antebellum South, adding that masters often allowed their slaves to join in on nighttime fox hunts. Perhaps the sporting button with the finely detailed fox face came from a discarded hunting coat given to one of the slaves involved in these activities.

Food preparation items from Area A included at least two cast iron vessels. According to the former Pensacola slave Mary Minus Biddie (1936:33), “a large iron rod was built in across the opening of the fireplace on which were hung pots that had special handles that fitted about the rod holding them in place over the blazing fire as the food cooking was done in a moveable oven which was placed in the fireplace over hot coals or corn cobs.” It is possible that the slaves at Area A utilized such methods. One of the cast iron pots recovered was large and probably held several gallons. In addition to cooking, the slaves at Area A would have also used large pots to
boil water for washing clothes. Both tasks were frequently performed by female slaves (White 1991:101-121).

Food service included refined earthenware, porcelain, glass tableware, and utensils. The refined earthenware ceramics, specifically pearlware and whiteware, are indicative of lower economic status. Based on George Miller’s four price-based ceramic categories, results indicate that the undecorated and minimally decorated sherds comprised 72% of the sample, or 50% and 22%, respectively. Hand painted sherds and transfer printed sherds, however, comprised only 13% and 14%, respectively. These results are heavily weighted toward the low end of Miller’s price scale (Miller 1980).

Other studies have concluded that a high percentage of plain and minimally decorated sherds and a low percentage of transfer printed sherds is consistent with low economic status. One example from Cannon’s Point Plantation, located on St. Simons Island, Georgia, compared ceramic collections from excavated slave, overseer, and planter structures (Otto 1975). The undecorated and minimally decorated sherds from slave and overseer structures comprised 67% and 71% of the ceramic assemblages, respectively. Hand painted sherds, however, comprised 5% for both and transfer printed sherds comprised 21% and 14%, respectively. For the planter/owner, the ceramic assemblage was comprised of 9% undecorated sherds, 3% minimally decorated sherds, 4% hand painted sherds, and 77% transfer printed sherds (Otto 1975). Similar results were obtained from slave sites at Kingsley and Rayfield plantations (Ascher and Fairbanks 1971:11; Fairbanks 1974).

Furthermore, the low frequency of porcelain in the assemblage may also be indicative of lower economic status. Only 11 sherds of porcelain were recovered from Area A, which accounts...
for less than .4% of the total ceramic assemblage. Miller (1980) has noted the relatively high cost of porcelain in relation to other ceramic types. Studies of planter sites have revealed that amounts ranging between 10% and 28% of a ceramic assemblage suggest wealth and higher status (Lewis and Hardesty 1979:48; Lewis and Haskell 1980:74). However, others have questioned the reliability of porcelain as an indicator of wealth and status (Otto 1977:106; Adams and Boling 1989:78).

Slaves at Arcadia may have acquired ceramics from the owners, who purchased wares specifically for them; they may have received ceramic discards from the owners; and/or they may have purchased their own ceramics (Otto 1977:94-101). An overview of the Area A hand painted and transfer printed ceramics reveals only one group of matching ceramics. These include three matching black transfer printed wares, composed of a cup, plate, and saucer. There is no other evidence of matching hand painted or transfer printed tableware sets in the assemblage. If the slaves at Arcadia acquired ceramics as discards or purchased their own ceramics, then the lack of matching wares and sets may indicate a lack of purchasing power. Given their lower purchasing power, the slaves at Arcadia probably acquired their wares piecemeal and not as sets. The Legend of Montrose plate, which was an expensive and highly coveted item, was anomalous in the assemblage and may represent a discard from the owners. Unfortunately, the topic of ceramic acquisition among the slaves at Arcadia is too complicated an issue to unravel at this time.

The storage/utilitarian items included stoneware, coarse earthenware, and glass bottles. The most prevalent ceramic type was Alkaline glazed stoneware, a distinctly Southern ceramic type which was developed in Edgefield District, South Carolina. Alkaline glazed stoneware
vessels were used by the slaves for processing and storing “molasses, whiskey, cured meats, and other staples of the Southern diet” (Orser et al. 1987). Alcohol was also consumed among the slaves at Area A. Olive green bottles were the most prevalent bottles at Area A, and likely contained beverages such as wine, porter, beer, and cyder. As one source indicated, alcohol was very common among the industrial slaves leased to the U.S. Navy (Dibble 1974:62, 74). While Forsyth may have purchased alcohol for his slaves, they may have also purchased such luxuries for themselves using personal earnings.

**Clothing**

Historical results indicate that Forsyth provided the Arcadia Mill slaves with clothing in the spring and fall, which generally included a lighter set for spring and summer and a heavier set for the fall and winter (Navy Yard of Pensacola 1838; Forsyth Papers 1855; Foster 1997:146). The two primary documents available indicate that Forsyth provided his slaves with “negro clothing,” a type of ready-made clothing purchased by slave owners, as well as surplus Navy clothing (Navy Yard of Pensacola 1838; Forsyth Papers 1855). It is probable that Forsyth also purchased “negro cloth,” which was purchased in bulk and made into clothing by the slaves (Davidson 2014:47).

Among the total sample of clothing fasteners, excluding buckles, shirt/utilitarian buttons comprise 41%, dress fasteners (hooks&eyes) comprise 26%, jacket/coat buttons comprise 23%, trousers/outer garment buttons comprise 5%, and vest buttons and glass dress buttons each comprise 3% of the sample. At Cannon’s Point, Otto (1975:256) observed that coat buttons comprised 48% of the planter site sample, while they only comprised 21% of the slave site sample. The percentage of coat buttons at Area A was similar to that of the slave site at Cannon’s
Point. Unfortunately, Otto provided no explanation for the observation and there is no comparative data on garment type from other low economic status sites to replicate or explain such findings.

Based on garment type, another indication of low economic status was the low percentage of vest buttons (3%, n=2) compared to jacket/coat buttons and other garment types. In her comparison of buttons from six mid-19th century archaeological sites, Anatolijs Venovcevs (2013) observed that vest buttons comprised about the same amount of the total sample as coat buttons. However, she noted that vest buttons were absent from two of the six sites, both of which were “sparsely occupied sites”. She explained that the lack of vest buttons “might reflect the difference between refined and working apparel as vests are an [extra] garment that, while needed as part of refined clothing, are not a necessary component of work attire.” The lack of vest buttons at the site is consistent with historical documents in which Joseph Forsyth forewent purchasing vests for his slaves, despite their abundance and low price. Clothing data based on buttons suggests that the occupants of Area A had less access to formal wear, including vests and decorated dresses, which is reflective of their lower economic status as slave laborers.

Results also indicate that at least two U.S. Navy buttons recovered from Area A were positively associated with blue U.S. Navy jackets purchased at auction for the Arcadia slaves. This association suggests that Area A was occupied by African American slaves during the 1828-1840 period. However, it is possible that these buttons were reused by slaves on other garments throughout the 1840s and 1850s.

While it is possible that other clothing artifacts matched garments purchased at the auction, none were directly identifiable. The auction was held at the Navy Yard in Pensacola on
2 October 1838. The records indicate that Joseph Forsyth purchased a variety of clothing items for his slaves, including: 140 duck banyans, 100 blue cotton jackets, 30 blue cloth jackets, 25 blue cloth trousers, 20 covered hats, and 20 wool hats. Duck banyans were sailors frock shirts made of a tightly woven fabric. These garments were pullovers and probably did not include buttons. However, if they did use buttons, they may have fastened in the chest and neck area. Although 30 shirt buttons were recovered from Area A, all were Prosser buttons that date after 1840. Therefore, none were attached to garments purchased at the auction. The blue cloth trousers were either fastened in the front or, as one source indicated, they were fastened in the back with ribbon. They may have also included buttons for suspenders. Type 21 buttons, four of which were recovered from Area A, may have been used specifically for trousers and could have attached to the blue cloth trousers purchased in 1838. However, it is not possible to determine if the Type 21 buttons were associated specifically with the blue cloth trousers.

Based on size, design, and date, results indicate that the two U.S. Navy buttons recovered from Area A matched the enlisted U.S. Navy jackets purchased at auction. U.S. Navy buttons were manufactured in small and large varieties (Emilio 1911; Johnson 1948; Albert 1976; Hughes and Lester 1991; Tice 1997). Officer uniforms were finely decorated and adorned with large and small U.S. Navy buttons. However, the 130 blue cloth jackets purchased by Forsyth were the type worn by enlisted men. These jackets were poorly fitted, relatively plain, and fastened with small U.S. Navy buttons (Tily 1964:75). Both U.S. Navy buttons recovered from Area A are of the small variety and date from about 1820 to 1840. One specimen was manufactured by Leavenworth, Hayden, and Scovill, who operated from 1811 to 1827, and the front design dates to the 1820s. The other specimen dates from 1830 to the early 1840s (Johnson
The auction was held to sell surplus clothing, much of which was slop clothing accumulated over previous years. Therefore, it is not surprising that at least one of the U.S. Navy buttons dates much earlier than the auction. It should be noted that military buttons have been recovered from many slave sites and are often interpreted as being associated with surplus navy clothing purchased for slaves (Ascher and Fairbanks 1971:13; Fairbanks 1974:88-89; Otto 1975:243-259, 1984:71-74; Kelso 1984:202; Trinkley 1993; Updike 2002; Franklin 2004; Cornelison and Hardy 2014).

Other clothing items included buckles, footwear, and items related to clothing maintenance and manufacture. Like many other items in the assemblage, the buckles lack any discernable decoration, which may also reflect a lower economic status. Alternatively, it is possible that some of the buckles were utilitarian and not intended for clothing (Grillo et al. 2003). Shoes were among the most loathed clothing item received by slaves, as they were often too stiff and did not fit (Genovese 1974:552-553). Two composite footwear fragments were identified as boots or shoes of peg construction, as opposed to the more expensive sewn types. Pegged footwear typically included heavy boots and cheaper shoes, such as brogans. Loose heel lifts were also recovered, which may indicate evidence of home repair.

Items related to clothing maintenance and manufacture include pins, thimbles, and a flatiron. The pins and thimbles may have been used to repair old and damaged clothing, to manufacture new garments from distributions of “negro cloth,” and to alter and personalize clothing, such as those worn on Sundays and holidays. As slave owners required slaves to arrive at work on Mondays in clean clothes, Saturday afternoon and Sundays were designated as wash days, where garments were washed, dried, and ironed (Genovese 1974:550-555). As noted
above, women were often responsible for performing such activities. As ironing required considerable skill to prevent damaging clothing, perhaps the older female slaves at Area A were responsible for this task.

**Household/Structural**

Results indicate that the slave quarters at Area A were of wood frame construction and rested on large sandstone foundation piers. In addition, the structures may have lacked lathing and plaster walls for insulation. Based on fittings and hardware recovered from Area A, ornamentation was limited to a single molded glass doorknob. Otherwise, fittings and hardware do not suggest that the structures at Area A exhibited a high level of ornamentation. During the Antebellum Period, increasing national and international pressure influenced slave owners to improve food, clothing, and housing standards for their slaves. Therefore, plank-covered frame houses such as these became common, as they were viewed as healthier and more comfortable for slaves compared to log cabins (Vlach 1993:157).

Researchers have concluded that architectural style, ornamentation, and durability are general indicators of higher economic status (Otto 1975:133-137; Lewis and Hardesty 1979:65; Lewis and Haskell 1980:55). The structures at Area A do not meet these criteria. The sandstone piers and lack of ornamentation suggests that the builders were interested in achieving low cost over aesthetics. The sandstone was quarried directly from deposits at Arcadia Mill, which were located in the lowlands adjacent to Pond Creek, and was a low cost alternative to brick foundation piers. It was also used in constructing the dam, sawmills, and textile mill, among other industrial components. Sandstone piers were also a vernacular architectural feature. Based on a review of stereographs by J.A. Palmer from 1871 to 1896, archaeologist Brooke Kenline
(2012:53-55) determined that the use of sandstone piers was almost ubiquitous among former slave cabins in South Carolina, as well as parts of Georgia and Florida. In contrast to sandstone piers at Area A, historic photographs of Ezekiel Simpson’s mansion and the possible domestic slave structure located nearby exhibited brick, but no major sandstone components. An archaeological survey at the Simpson Lot also did not reveal evidence of sandstone piers (Cochran 2013).

**Personal**

The Dorr memoir indicates that the slaves were paid for vegetables, poultry, and extra work performed (Dorr [1900]:17). It is also possible that the skilled male slaves hired themselves out during their free time, as was common in West Florida (Handley 2005). These types of activities allowed the slaves at Arcadia to earn incomes and purchase some luxury items for themselves. According to Dorr, “many men saved up and bought a cow or a horse; women bought finery” ([1900]:17). Results indicate that the slaves living at Area A may have had limited access to decorative and cosmetic items, as these subcategories only included an earring, three glass beads, a necklace chain, an unidentified jewelry item, and a razor blade. However, it is also possible that slaves living at Area A protected and curated the few decorative items they were able to acquire. Furthermore, the 1/2 in. screen size used during the 2011 field season probably affected the quantity of beads and other small personal items recovered.

It is also possible that the slaves at Area A were more selective in the types of luxury items they chose to purchase. For example, results indicate that the slaves living at Area A were acquiring a relatively large quantity of tobacco pipes that varied by material and design. Although the pipes may have been supplied by their owners, the quantity and variety of types
indicates that slaves purchased these items for themselves. Similar to clothing, manufacturers and merchants offered “negro pipes” for sale to slave owners and slaves (Otto 1984:76). The assemblage includes a minimum of 18 pipes ranging between kaolin, coarse earthenware, and stoneware and by shape and design. All of the coarse earthenware and stoneware specimens are elbow pipes that probably date to the 1840s and 1850s. According to archaeologist J.W. Joseph (2004:23), “pipes were integral facets of African life, where they were…used to denote rank and status.” It is possible that elders of the Arcadia slave community, including Daniel and other veterans of the old sawmill, acquired and used these pipes for recreation and as a sign of social status.

Among the coarse earthenware specimens, two are green glazed anthropomorphic pipes that depict human heads on the bowl. One of the specimens matches a pipe recovered from the Five Points Site in New York City and depicts a figure, perhaps a “turk” or an African, with a turban, beard, and earring (Reckner and Dallal 2000:24). This specimen may also depict a biblical figure, such as the Ninevien pipe made by French pipe manufacturer Gambier (Joseph 2004:23-34). Both specimens are indicative of French or German-made anthropomorphic elbow pipes that were specifically made for export to America during the mid-19th century. According to Pfeiffer and colleagues, some German pipemakers believed the anthropomorphic pipes were used by slaves living on cotton plantations and sometimes called them “Sklavenpfeifen” (slave pipes) and “Negerpfeifen” (negro pipes) (Pfeiffer et al. 2007:6).

An umbrella ink bottle, slate fragments, and a pencil lead fragment recovered from Area A indicate that at least one of the slaves living at Area A was literate. Evidence of writing is not surprising, as many of the male slaves laboring at Arcadia Mill were skilled and semi-skilled
laborers who learned to read and write as a necessary component of their work as sawyers, carpenters, and blacksmiths. Although the southern states enacted laws forbidding literacy among the slave population, Genovese (1974) estimates that greater than five percent were able to read and write and the amount was even greater in towns and cities. In West Florida, the rate of literacy was probably higher than the average. According to Rucker (1990:597), “some masters taught their slaves to read, write, and cipher in order to better conduct the mechanical and commercial aspects of the business.”

In addition to treatment at the hospital, the pharmaceutical bottles recovered indicate the slaves living at Area A had access to proprietary medicine for treating pain, symptoms of consumption, and hair loss. All of the specimens date after 1840. The work performed by the slaves at Arcadia, particularly the sawmill slaves, was physically demanding and dangerous. In 1855, Forsyth’s male slaves were described as cripple, lame, rheumatic, asthmatic, and badly herniated. These artifacts may also indicate that the slave population at Area A suffered from general symptoms of aging, which is consistent with demographic data suggesting that the six oldest members of the Arcadia population were living at Area A.

**Labor**

The variety of labor artifacts recovered from Area A also suggests that the slaves were engaged in labor activities at the mill and represent the close association between work and domestic spheres at the mill. Miscellaneous tools include blade fragments, tool handle fragments, and chain fragments. Identifiable tools include a claw hammer, triangular file, and a fire rake. Artifacts in the industrial subcategory match identical specimens recovered from the textile/lumber mill excavations in 1990. It is possible that the slaves carried these items back to
the quarters by accident or perhaps brought them back with the intention of repairing or repurposing items broken at the mill. These artifacts include: cotter pins, brass rivets, shuttle tips, and spindle fragments. In addition, the metalworking subcategory includes a single slag specimen characteristic of refuse from Arcadia’s blacksmith forge. Dorr ([1900]:17) indicated that some male slaves at Arcadia Mill were able to earn enough income to purchase a cow or horse. Therefore, it is not surprising that a stirrup and snaffle bit were recovered from Area A. Horse tack recovered from Area A may also indicate that that the male slaves at Area A had considerable access to resources. Horse tack has also been recovered from slave residences at Cannon’s Point (Otto 1975).

Conclusion

Objectives of this study included conducting primary historical research on the slave population and performing an archaeological analysis of the assemblage to assess whether Area A was occupied by part of the slave population. Research methodologies included providing a contextual analysis of the historical record in order to frame the archaeological analysis and interpret material culture. In addition to a synthesis of slavery in Antebellum West Florida, this study also revealed a variety of new information about Arcadia Mill’s connection to the slave trade, the sawmill and textile mill populations, and material living conditions of industrial slave laborers at Arcadia.

Different from the agriculturally productive areas of the South, where the slave populations often outnumbered free whites, the population of African American slaves never rose above 36% of the total population in Antebellum West Florida. All of the large slaveholdings in West Florida were used for industrial purposes, including government
construction projects, brickyards, and sawmills. The type of slavery practiced in West Florida was relatively distinct in the Antebellum South, as only 5% of the South’s total slave population was employed in industry. Arcadia Mill was one of the industrial ventures that utilized a large number of slaves in West Florida.

Historical research showed that Forsyth and Simpson actively participated in the purchasing of slaves in the local and interstate slave trade and that these purchases typically coincided with increased labor demands at the mill. During the 1830s, it was most efficient for Forsyth to purchase his male slaves in the nearby New Orleans market, as opposed to less expensive but more distant northern markets, such as Richmond or Norfolk. During the 1840s, the owners travelled north to purchase slave labor for the textile mill, which saved them a considerable sum on their investment. Records indicated that, throughout the mill’s history, the owners preferred prime age slaves, or those from 10 to 30 years of age, which provided them with the greatest net earnings.

During the 1828-1840 period, the slave population was comprised primarily of prime age male slaves. Not surprisingly, price data suggested that some of these individuals were skilled in carpentry and possibly blacksmithing. By 1840, the adult slave population included 37 male slaves and the oldest individuals were those that had labored at the sawmill from 1828 to 1836. Around 1840, the sawmill operation and slaves were relocated to the Blackwater River in Bagdad. Around 1846, the population at the textile mill was comprised of at least 40 young female slaves. No historical documents were identified indicating if and how many other slaves were employed at the textile mill during its first year of operation. By 1850, the population had
increased to 3 females and 3 males from 36 to 55 years of age, 73 females and 19 males from 10 to 35 years of age, and 12 children under the age of 10.

This study found that, based on historical and archaeological data, the most likely occupants of Area A were members of the African American slave population. Specifically, slave quarters were probably constructed during the 1828-1840 period to house the all-male slave population that labored at the sawmill. When the site was occupied during the 1845-1855 period, Forsyth may have housed a group of slave families in the old quarters, which included the oldest members of the slave community and their children.

While the archaeological data suggest that the slaves were of lower economic status, there was also historical and archaeological evidence indicating they were able to earn incomes to purchase livestock and various small luxuries, such as finery, tobacco, and alcohol. Archaeological data also indicate that some of the slaves were literate and had access to firearms for hunting. While these artifact types are not new on slave sites, they are particularly intriguing because many of the occupants were skilled slaves that may have had greater privilege and opportunity compared to ordinary slave laborers.

Several methodologies were employed in this study that may be of value to other researchers of African American slave sites. While archaeologists have used purchase records to identify information about the size and shape of slave populations, few previous studies have employed the use of slave manifests for similar purposes. Slave manifests include a wealth of information about individual slaves, including name, sex, age, height, and skin color, as well as information about origins, owners, shippers, buyers, and sellers. These records may be particularly helpful for sites located near major seaports. On a micro-scale, this study also
utilized data from individual purchase records to demonstrate how slave prices compared with average market prices compiled by economic historians. Such an analysis has the potential to reveal qualitative information about buyers and their slave property.

A rarely used archaeological method employed in this thesis included the analysis of clothing fasteners by function. Biannual clothing disbursements for slaves typically included only essential work clothing and excluded more refined items, specifically vests. By considering the distribution of clothing fasteners by function, it was possible to determine how frequently vests were represented at the site. As noted, vests were infrequent at Area A. Limitations of this method may include the lower frequency of vest buttons on sites overall. However, as one study has shown, vest buttons are recovered on some sites as frequently as coat buttons (Venovcevs 2013).

Lastly, this study identified U.S. Navy auction records showing that the owner purchased condemned U.S. Navy clothing for his slaves, which helped explain the U.S. Navy buttons recovered from the site. Other researchers have speculated that military buttons recovered from slave sites were the result of owners purchasing surplus clothing for their slaves (Kelso 1984:202; Otto 1984:71-74; Updike 2002:112-113, 124; Cornelison and Hardy 2014:69, 138-147, 177). However, they were unable to identify corroborating historical documents. Findings from this study indicate that slave owners did purchase surplus clothing and that those previous interpretations were probably accurate.

Furthermore, results also demonstrate that it is possible to identify documents related to military buttons recovered from slave sites. In 1838, the Navy Agent at the Pensacola Navy Yard sent the auction records to the Naval Headquarters in Washington, DC. If similar documents
exist for other navy yards, they are probably located in Record Groups 45 or 77, located at the National Archives and Records Administration in Washington, DC. Similar auction records probably also exist for the U.S. Army. Limitations may include cases in which slave owners purchased surplus clothing from merchants who had previously acquired items at auction.

Future directions should include a focused effort on public interpretation of slavery at Arcadia Mill Archaeological Site. Although the topic provokes strong emotions from the public, it is still important to show the full history of Arcadia Mill, both good and bad. A variety of archaeologists and historians are actively engaged in the topic of interpreting slavery and many have used it to engage the public on important issues of race and class in the past and present (McDavid 2002; Horton and Horton 2006; Armstrong 2008; Mullins 2008; Stottman 2010; Brandon 2008, 2013). Although this study has focused on establishing some fundamental elements regarding slavery in the historical and archaeological record, future graduate students and researchers can continue to work with and expand this research in ways that are engaging to the public.
REFERENCES

**A.E. Wright’s Commercial Directory**

Adams, William H., and Sarah J. Boling

Albert, Alphaeus H.

Anderson, Adrienne

Armstrong, Douglas V.

Ascher, Robert, and Charles H. Fairbanks
1971  Excavation of a Slave Cabin: Georgia, USA. *Historical Archaeology* 5:3-17.

Baldwin, Joseph K.

Bancroft, Frederic
1931  *Slave Trading in the Old South*. Frederick Ungar, New York, NY.

Beaudry, Mary C.

Biddie, Mary M.

Brandon, Jamie C.


Brasher, Janet G.

Brown, Kenneth L., and Doreen C. Cooper

Chapel, Charles E.
1939 *Gun Collecting*. Coward-McCann, New York, NY.

Cochran, Lindsay

Cornelison, John E., and Meredith D. Hardy
2014 *Chimneys Revisited: Archeological Testing of Selected Slave Cabins at the Stafford Plantation, 9CM104 Cumberland Island National Seashore, Cumberland Island, Georgia*. Southeast Archeological Center, Accession 1402/1844, Tallahassee.

Crawford, Laurie C.

Dana, Richard H.

Davidson, James M.

*De Bow’s Review*


Emilio, Luis F. 1911 *The Emilio Collection of Military Buttons.* Essex Institute, Salem, MA.

Escambia County Circuit Court Records 1853 G. Willis vs. J. Forsyth. Microfiche, File 1853-1369, Archives and Records Division, Pensacola, FL.

Escambia County Deed Book B 1829 Larkin to Simpson, 5 November, Deed Book B:200, Official Records, Escambia County Clerk’s Office, Pensacola, FL.

1833a Cooper to Forsyth, 4 Jan, Deed Book B:434, Official Records, Escambia County Clerk’s Office, Pensacola, FL.

1833b Simpson to Simpson, 14 Oct, Deed Book B:513, Official Records, Escambia County Clerk’s Office, Pensacola, FL.

Escambia County Deed Book C 1836 Forsyth and Simpson to Strong, 18 July, Deed Book C:475, Official Records, Escambia County Clerk’s Office, Pensacola, FL.

Escambia County Deed Book I 1848 Pefanio to Arcadia Manufacturing Co., 19 August, Deed Book I:442, Official Records, Escambia County Clerk’s Office, Pensacola, FL.

Escambia County Deed Book L 1853 Arcadia Manufacturing Co. to Pefanio, 24 June, Deed Book L:151, Official Records, Escambia County Clerk’s Office, Pensacola, FL.
Evans, Robert Jr.  

Ewing, Elizabeth  

Fairbanks, Charles H.  

Fesler, Garrett R.  

Fike, Richard E.  

Fogel, Robert W.  

Fogel, Robert W., and Stanley L. Engerman  

Forsyth and Simpson v. Perry  

Forsyth Papers  
1855  Ledger and Day Book, Estate of Joseph Forsyth. Accession M1968-11/64, University Archives and West Florida History Center, The University of West Florida, Pensacola, FL.  
1862  Condensed Statement of Executor’s Account, Estate of Joseph Forsyth. Accession M1968-11/64, University Archives and West Florida History Center, The University of West Florida, Pensacola, FL.
Foster, Helen B.

Franklin, Maria

Gallo, John
1985 Nineteenth and Twentieth Century Yellow ware. Heritage Press, Richfield Springs, NY.

Genovese, Eugene D.

Grillo, Kate, Jennifer Aultman, and Nick Bon-Harper

Handley, Wilma L.

Hardesty, Donald
1994 Class, Gender Strategies, and Material Cultures in the Mining West. In Those of Little Note: Gender, Race, and Class in Historical Archaeology, Elizabeth M. Scott, editor, pp. 129-148. The University of Arizona Press, Tucson, AZ.

Hinks, Stephen

Horton, James O. and Lois E. Horton

Huddleson, Julia E., and Mitsuru S. Watanabe

Hughes, Elizabeth, and Marion Lester
1991 The Big Book of Buttons. New Leaf, Sedgwick, ME.
Hühner, Leon

Hulse, Thomas

Hume, Ivor Noël

Humphrey, Richard V.

Hunt, John
1833b  Letter of Introduction from Jackson Morton, Fredericksburg Slave Sales, 23 September, John Hunt File, Pensacola Historical Society Resource Center, Pensacola, FL.
1833c  Letter of Introduction from Hanson Kelly, North Carolina Slave Sales, 23 September, John Hunt File, Pensacola Historical Society Resource Center, Pensacola, FL.

Johnson, David F.

Johnson, Walter

Joseph, J.W.

Kelso, William M.

Kenline, Elizabeth B.
2012  *Capitalist Entrepreneurs and Industrial Slavery in the Rural Antebellum South*. Master’s thesis, Department of Anthropology, University of South Carolina, University Microfilms International, Ann Arbor, MI.
Ketchum, William C., Jr.  

Keyser, John H.  
1848 Minutes of Southern Travel-No. 11. *Young America (1845-1848)*, American Periodicals Series Online, pp.2.

Kotlikoff, Laurence J.  
1979 The Structure of Slave Prices in New Orleans, 1804 to 1862. In *Economic Inquiry* 17(4):496-518.

Kwas, Mary L.  
2009 *Digging for History at Old Washington.* The University of Arkansas Press, Fayetteville, AR.

Lange, Frederick W., and Jerome S. Handler  

Lazarus, William C.  

Lewis, George  

Lewis, Kenneth E., and Donald L. Hardesty  

Lewis, Kenneth E., and Helen Haskell  

Light, John D.  


Lindbergh, Jennie
1999 Buttoning Down Archaeology. Australasian Historical Archaeology 17:50-57.

Lindsey, Bill

Little, Keith J., Caleb Curren, and Lee McKenzie

Lorrain, Dessamae

Luscomb, Sally C.

Mabelitini, Brian, and John C. Phillips

Madsen, Andrew D., and Carolyn L. White
2011 Chinese Export Porcelain. Left Coast Press, Walnut Creek, CA.

Martinkovic, Mark F.

McDavid, Carol

Miller, George L.

Moore, John H.
1967 Andrew Brown and Cypress Lumbering in the Old Southwest. Louisiana State University Press, Baton Rouge, LA.
Moore, Sue M.  

Morgan, Phillip D.  

Morton, Jackson  
1838 Nancy Lindsay to Jackson Morton, 25 April, Morton-Halsey Family, Culpepper County, Virginia, Alabama, and Florida, Records of Ante-Bellum Southern Plantation from the Revolution Through the Civil War, Series E, Reel 37, University Publications of America, Frederick, MD.

Mullins, Deborah  

Mullins, Paul R.  

Naval Affairs  

*Naval Magazine*  

Navy Commissioners’ Office  
Navy Yard of Pensacola
1826 Warrington to the President of the Board of Commissioners of the Navy, 27 April, Record Group 45, Records Collection of the Office of Naval Records and Library, Records of Boards and Commissions, Records Collection of the Office of Naval Records and Library, Records of Boards and Commissions, 1812-90, National Archives and Records Administration, Washington, DC.
1838 Return of the Following Condemned Clothing and Provisions Sold at Auction for the Benefit of the U.S. Navy Department and Order of Mr. Eastin, Esq. Navy Agent, 2 October, Record Group 45, Records Collection of the Office of Naval Records and Library, Records of Boards and Commissions, 1812-90, Letters Received from Navy Agents, May 1815-July 1842, Vol. 52, pp. 75-80, National Archives and Records Administration, Washington, DC.

Nelson, Lee H.

New Orleans Notarial Act
1828a Sale of Slave, Woolfolk to Underhill and Strong, 18 December, Book 3, Folio 562, Notarial Archives Division, Clerk of Civil District Court, New Orleans, LA.
1828b Sale of Slave, Woolfolk to Strong and Underhill, 27 August, Book 4, Folio 254, Notarial Archives Division, Clerk of Civil District Court, New Orleans, LA.
1829a Sale of Slave, Woolfolk to Underhill and Strong, 2 January, Book 4, Folio 505, Notarial Archives Division, Clerk of Civil District Court, New Orleans, LA.
1829b Sale of Slave, Diggs to Underhill and Strong, 22 April, Book 5, Folio 42, Notarial Archives Division, Clerk of Civil District Court, New Orleans, LA.
1829c Sale of Slave, Woolfolk to Underhill and Strong, 1 May, Book 5, Folio 61, Notarial Archives Division, Clerk of Civil District Court, New Orleans, LA.
1829d Sale of Slave, Hunt to Underhill and Strong, 2 May, Book 5, Folio 67, Notarial Archives Division, Clerk of Civil District Court, New Orleans, LA.
1829e Sale of Slave, Cotton to Underhill and Strong, 7 May, Book 5, Folio 74, Notarial Archives Division, Clerk of Civil District Court, New Orleans, LA.
1838 Sale of Slave, Sydur to Simpson, 20 February, Boswell v52 act 169, Notarial Archives Division, Clerk of Civil District Court, New Orleans, LA.
1839a Sale of Slave, Freeman to Forsyth, 4 January, Barnett v5 act 5, Notarial Archives Division, Clerk of Civil District Court, New Orleans, LA.
1839b Sale of Slave, Freeman to Simpson, 4 January, Barnett v5 act 6, Notarial Archives Division, Clerk of Civil District Court, New Orleans, LA.
1841 Sale of Slave, Sheldon to Simpson, 7 December, W Christy v43 act504 507, Notarial Archives Division, Clerk of Civil District Court, New Orleans, LA.
1843 Sale of Slave, Hagan to Simpson, 23 November, E Barnett v23 act358, Notarial Archives Division, Clerk of Civil District Court, New Orleans, LA.
1849 Sale of Slave, Johnson to Simpson, 17 May, E Barnett v45 act453, Notarial Archives Division, Clerk of Civil District Court, New Orleans, LA.
1850  Sale of Slave, Gray to Simpson, 6 January, AC Ainsworth v11 act48, Notarial Archives Division, Clerk of Civil District Court, New Orleans, LA.

Northup, Solomon

O'Connor, Jack

Orser, Charles E.

Orser, Charles E. and Annette M. Nekola
1987  *The Material Basis of Postbellum Tenant Plantation: Historical Archaeology in the South Carolina Piedmont.* The University of Georgia Press, Athens, GA.

Orser, Charles E., Annette M. Nekola, and James L. Roark

Otto, John S.

Overman, C.H.

*Pensacola Gazette*
1833a Notice. *Pensacola Gazette* 2 January. Pensacola, FL.
1837b The Resources of Escambia County. Pensacola Gazette 15 April. Pensacola, FL.
1837d Dean and Parsons: Advertisement. Pensacola Gazette 9 December. Pensacola, FL.
1844  Presentment of Escambia County Grand Jury. Pensacola Gazette 1 June. Pensacola, FL.
1845a No title. Pensacola Gazette 15 February. Pensacola, FL.
1845b No title. Pensacola Gazette 13 September. Pensacola, FL.
1845c No title. Pensacola Gazette 13 December. Pensacola, FL.
1846a No title. Pensacola Gazette 18 April. Pensacola, FL.
1846b Manufactures in the South. Pensacola Gazette 15 August. Pensacola, FL.
1846c No title. Pensacola Gazette 10 October. Pensacola, FL.

Pfeiffer, Michael A.
1982  Clay Tobacco Pipes and the Fur Trade of the Pacific Northwest and Northern Plains.
      Master’s Thesis, Department of Anthropology, University of Idaho, Moscow, ID.

Pfeiffer, Michael A., Richard T. Gartley, and J. Byron Sudbury

Phillips, John C.
      Paper presented at the 16th Gulf Coast History and Humanities Conference, Pensacola, FL.
2009  Arcadia Village: Community Organization and Social Structure. Research Design and Methodology, on file at The University of West Florida, Archaeology Institute, Pensacola, FL.

Phillips, Ulrich B.

Polk, James K.
Price, Cynthia

Pritchett, Jonathan B., and Herman Freudenberger

Randall, Mark E.

Rankin, Robert H.
1962 *Uniforms of the Sea Services: A Pictorial History*. United States Naval Institute, Annapolis, MA.

Reckner, Paul F., and Diane Dallal

Reitz, Elizabeth J., Tyson Gibbs, and Ted A. Rathbun

Rivers, Sara
1999 An Analysis of the Buttons from Three Historic Homes in Western Kentucky. *Ohio Valley Historical Archaeology* 14:29-35.

Rucker, Brian R.

Samford, Patricia M.
Sams, Adrianne
2013  *Arcadia Mill Village: Spatial Analysis of a Nineteenth Century Industrial Community*. Department of Anthropology, The University of West Florida, University Microfilms International, Ann Arbor, MI.

Simpson, Ellen

Singleton, Theresa A.

Singleton, Theresa A., and Mark D. Bograd
1999  *Archaeology of the African Diaspora in the Americas*. The Society for Historical Archaeology, Guides to Historical Archaeological Literature, 2. California, PA.

Slave Manifest


Smyth, W.H.

South, Stanley

Sprague, Roderick

Stampp, Kenneth M.

Starbuck, David R.
1994 The Identification of Gender at Northern Military Sites of the Late Eighteenth Century. In Those of Little Note: Gender, Race, and Class in Historical Archaeology, Elizabeth M. Scott, editor, pp. 115-128. The University of Arizona Press, Tucson, AZ.

Starobin, Robert S.

Steen, Carl

Stevens, Sarah C., and Margaret T Ordoñez
Stottman, Jay M. (editor)
2010 Archaeologists as Activists: Can Archaeologists Change the World? University of Alabama Press, Tuscaloosa, AL.

Sudbury, Byron

Taylor, Bob
1992 Andrew P. and Adelia Simpson, Simpson File, Pensacola Historical Society Resource Center, Pensacola, FL.

Thomas, Rylan
2012 Paths to Arcadia: The Purchase and Movement of Slaves to Arcadia Mill. Paper presented at the 13th Annual Gulf South History and Humanities Conference, Pensacola, FL.

Tice, Warren K.
1997 Uniform Buttons of the United States. Thomas, Gettysburg, PA.

Tily, James C.

Trinkley, Michael

Updike, William D.

U.S. Bureau of the Census


U.S. Navy


Venovcevs, Anatolijs


Veres, Maya


Vlach, John M.


Walthall, John A.


Wheaton, Thomas R., Jr., and Patrick H. Garrow

White, Carolyn L.


White, Deborah G.

Willis, Byrd C.
1909  *A Sketch of the Willis Family, Fredericksburg Branch*. Whittet and Shepperson, Richmond, VA.

Wilson, William L.

Winant, Lewis
APPENDIX A

Copyright Permission, 1
ILLINOIS STATE ARCHAEOLOGICAL SURVEY
COPYRIGHT USE AND PERMISSION

Permission has been granted to Rylan Thomas to use images listed here:

Images on pages 291 and 292, which are of the transfer printed Legend of Montrose plate.

Walthall, John A.

This is for the purpose of a thesis entitled “Industrial Slavery at Arcadia Mill: An Historical and Archaeological Investigation,” by Rylan Thomas. Mr. Thomas is completing his MA thesis at the University of West Florida.

The Expected date of completion is 2014/2015.

• These images cannot be used for other purposes unless agreed upon in writing by ISAS.
• Use of these images does not negate ISAS copyright over them or ISAS future use of them.
• This constitutes permission for a one-time use only.
• Permission is NOT granted for use in ancillary, marketing, or advertising materials.
• There is no image use fee.
• ISAS will get one complimentary copy of the thesis after it is completed.
• Please credit as follows: “Courtesy of the Illinois State Archaeological Survey, University of Illinois.”

Laura Kozuch
2014.10.16 14:05:02 -05'00'

Dr. Laura Kozuch, ISAS Curator

Date
APPENDIX B

Copyright Permission, 2
Rylan Thomas, Graduate Research Assistant
UWF Archaeology Institute
Bldg. 89, 11000 University Pkwy.
Pensacola, FL 32514

10/15/14

Wade P. Catts, Associate Director
Cultural Resources Department
John Milner Associates, Inc.
535 North Church St.
West Chester, PA 19380

Dear Mr. Catts:

I am completing a master’s thesis at The University of West Florida entitled “Industrial Slavery at Arcadia Mill: An Historical and Archaeological Investigation.” I am writing to request your permission to reprint the following material in my thesis:

Reckner, Paul F. and Diane Dallal

The content to be reproduced includes Pipe #118 on Plate IV.

A print copy of my thesis will be archived in the John C. Pace Library at The University of West Florida in Pensacola. An electronic version will be archived at the Florida Center for Library Automation (FCLA). The requested permission extends to any future revisions and editions of my thesis including non-exclusive world rights in all languages. These rights will in no way restrict republication of the material in any other form by you or others authorized by you. Your signing of this letter will confirm that your company owns the copyright to the above-described material.

Thank you for your attention in this matter.

Sincerely,

Rylan Thomas

---

**PERMISSION GRANTED FOR THE USE AS REQUESTED ABOVE:**

By: [Signature]

Wade P. Catts

Date: 10/14/14